有两条角平分线相等的三角形是等腰三角形吗?

怎么证?
2025-02-26 05:41:27
推荐回答(2个)
回答1:

证明:设CF、BE交于O
BE是角平分线推出:BC/CE=AB/AE,
同理:BC/BD=AC/AD,
∵∴BD=CE
∴AB/AE=AC/AD(等量代换)
∵∠A是公共角
∴三角形ACD∽三角形ABE
∴∠ACD=∠ABE,
∠BDC=∠BEC,
BD=CE,
∴三角形BOD≌三角形OEC,
∴OB=OC且∠DBE=∠ECD,OB=OC
∴∠OBC=∠OCB,
∴∠ABC=∠ACB,
∴AB=AC
∴三角形是等腰三角形

回答2:

在一个三角形里有两条角平分线相等,那么这是一个等腰三角形。(斯坦纳——雷米欧司定理)
根据这定理很容易证出该三角形是等边三角形。

下面是这定理的证明:
设CF、BE交于O
BE是角平分线推出:BC/CE=AB/AE,同理:BC/BD=AC/AD,因为BD=CE,所以等量代换得出:
AB/AE=AC/AD,角A是公共角,所以三角形ACD与ABE相似,所以LACD=LABE,同理LBDC=LBEC,再加上BD=CE,所以三角形BOD全等于三角形OEC,所以OB=OC且LDBE=LECD,OB=OC推出LOBC=LOCB,再等量代换得到LABC=LACB,所以AB=AC