http://baike.baidu.com/view/915249.htm
http://baike.baidu.com/view/1652198.html
图示为单项的分解180
知识点讲解——短除法
短除法 求最大公因数的一种方法,也可用来求最小公倍数。
求几个数最大公因数的方法,开始时用观察比较的方法,即:先把每个数的因数找出来,然后再找出公因数,最后在公因数中找出最大公因数。
例如:求12与18的最大公因数。
12的因数有:1、2、3、4、6、12。
18的因数有:1、2、3、6、9、18。
12与18的公因数有:1、2、3、6。
12与18的最大公因数是6。
这种方法对求两个以上数的最大公因数,特别是数目较大的数,显然是不方便的。于是又采用了给每个数分别分解质因数的方法。
12=2×2×3
18=2×3×3
12与18都可以分成几种形式不同的乘积,但分成质因数连乘积就只有以上一种,而且不能再分解了。所分出的质因数无疑都能整除原数,因此这些质因数也都是原数的约数。从分解的结果看,12与18都有公因数2和3,而它们的乘积2×3=6,就是12与18的最大公因数。
采用分解质因数的方法,也是采用短除的形式,只不过是分别短除,然后再找公因数和最大公因数。如果把这两个数合在一起短除,则更容易。
从短除中不难看出,12与18都有公因数2和3,它们的乘积2×3=6就是12与18的最大公因数。与前边分别分解质因数相比较,可以发现:不仅结果相同,而且短除法竖式左边就是这两个数的公共质因数,而两个数的最大公因数,就是这两个数的公共质因数的连乘积。
参考图片https://gss0.baidu.com/70cFfyinKgQFm2e88IuM_a/baike/pic/item/35e940dfdc16f3004954039f.jpg