简单分析一下,答案如图所示
可以直接求,但我分步求下。
令z=arctanu,u=(x+y)/(x-y);
dz/du=1/(1+u²)
=1/[1+(x+y)²/(x-y²)]
=(x-y)²/[(x-y)²+(x+y)²]
=(x-y)²/(2x²+2y²)
∂u/∂x=[(x-y)-(x+y)]/(x-y)²=-2y/(x-y)²
∂u/∂y=[(x-y)-(x+y)(-1)]/(x-y)²=2x/(x-y)²
则:
∂z/∂x=(dz/du)(∂u/∂x)
=[(x-y)²/(2x²+2y²)]*[-2y/(x-y)²]
=-2y(x-y)²/[(2x²+2y²)(x-y)²]
=-y/(x²+y²)
∂z/∂y=(dz/du)(∂u/∂y)
=[(x-y)²/(2x²+2y²)]*[2x/(x-y)²]
=2x(x-y)²/[(2x²+2y²)(x-y)²]
=x/(x²+y²)
最后的答案y应该是正的,x是负的。