二阶微分方程y″+3y′+2y=0的特征方程为:r2+3r+2=0,其特征根为:r1=-2,r2=-1,由于e-x的λ=-1,是对应特征方程的单根,由微分方程的性质可知:特解的形式为:Axe-x将特解代入原方程得:-2Ae-x+Axe-x+Ae-x-Axe-x+2Ae-x=e-x即:Ae-x=e-xA=1特解的为:xe-x故选择:D.