当x+π/4=2kπ+π/2
(k=0,±1,±2,.......)时,y=sin(x+π/4)取得最大值,最大值为1
解得:x=2kπ+π/4
(k=0,±1,±2,.......)
所以函数取得最大值时x的取值集合为:
{x|x=2kπ+π/4
,k=0,±1,±2,.......}
fx=2cosxsin(x+π/6)-1/2
f'(x)=-2sinxsin(x+π/6)+2cosxcos(x+π/6)
=2cos(x+x+π/6)=2cos(2x+π/6)
驻点:2x+π/6=2kπ±π/2
x=kπ+π/6或x=kπ-2π/3
f''(x)=-4sin(2x+π/6)
f''(kπ+π/6)<0,f(kπ+π/6)为最大值
∴函数取得最大值时x的取值的集合x∈{x|,x=kπ+π/6}
(2)cos(α+π/6)=4/5
α=arccos(4/5)-π/6
α/2-π/12=arccos(4/5)/2-π/4
f(α/2-π/12)=2cos(arccos(4/5)/2-π/4)sin(arccos(4/5)/2-π/4+π/6)-1/2
=2cos(arccos(4/5)/2-π/4)sin(arccos(4/5)/2-π/12)-1/2
=2(√2/2·3√10/10+√2/2·√10/10)·[√10/10·(√6+√2)/4-3√10/10·(√6-√2)/4]-1/2
=√2(2√10/5)·√10·(2√2-√6)/20
=(4-2√3)/5