这个题,初看,一次系数一点规律也没有,还附带一个a,应该不可能有巧解,还是自己动手做吧. 答案可能很复杂。 估计要用到三次方程的通解,还是放弃吧
分别把式子两边通分
先化简阿 去分母 在比较系数 求出a来 不知道还有什么更好的方法了
x=
[ 1/3/(a-7)*(3306*a-10835+264*a^2-80*a^3+36*(-12*a^4+68*a^3+69*a^2-384*a+1922)^(1/2)*a-252*(-12*a^4+68*a^3+69*a^2-384*a+1922)^(1/2))^(1/3)+1/3*(-148*a-167+28*a^2)/(a-7)/(3306*a-10835+264*a^2-80*a^3+36*(-12*a^4+68*a^3+69*a^2-384*a+1922)^(1/2)*a-252*(-12*a^4+68*a^3+69*a^2-384*a+1922)^(1/2))^(1/3)-1/3*(-43+8*a)/(a-7)]
[ -1/6/(a-7)*(3306*a-10835+264*a^2-80*a^3+36*(-12*a^4+68*a^3+69*a^2-384*a+1922)^(1/2)*a-252*(-12*a^4+68*a^3+69*a^2-384*a+1922)^(1/2))^(1/3)-1/6*(-148*a-167+28*a^2)/(a-7)/(3306*a-10835+264*a^2-80*a^3+36*(-12*a^4+68*a^3+69*a^2-384*a+1922)^(1/2)*a-252*(-12*a^4+68*a^3+69*a^2-384*a+1922)^(1/2))^(1/3)-1/3*(-43+8*a)/(a-7)+i*(1/6/(a-7)*(3306*a-10835+264*a^2-80*a^3+36*(-12*a^4+68*a^3+69*a^2-384*a+1922)^(1/2)*a-252*(-12*a^4+68*a^3+69*a^2-384*a+1922)^(1/2))^(1/3)-1/6*(-148*a-167+28*a^2)/(a-7)/(3306*a-10835+264*a^2-80*a^3+36*(-12*a^4+68*a^3+69*a^2-384*a+1922)^(1/2)*a-252*(-12*a^4+68*a^3+69*a^2-384*a+1922)^(1/2))^(1/3))*3^(1/2)]
[ -1/6/(a-7)*(3306*a-10835+264*a^2-80*a^3+36*(-12*a^4+68*a^3+69*a^2-384*a+1922)^(1/2)*a-252*(-12*a^4+68*a^3+69*a^2-384*a+1922)^(1/2))^(1/3)-1/6*(-148*a-167+28*a^2)/(a-7)/(3306*a-10835+264*a^2-80*a^3+36*(-12*a^4+68*a^3+69*a^2-384*a+1922)^(1/2)*a-252*(-12*a^4+68*a^3+69*a^2-384*a+1922)^(1/2))^(1/3)-1/3*(-43+8*a)/(a-7)+i*(-1/6/(a-7)*(3306*a-10835+264*a^2-80*a^3+36*(-12*a^4+68*a^3+69*a^2-384*a+1922)^(1/2)*a-252*(-12*a^4+68*a^3+69*a^2-384*a+1922)^(1/2))^(1/3)+1/6*(-148*a-167+28*a^2)/(a-7)/(3306*a-10835+264*a^2-80*a^3+36*(-12*a^4+68*a^3+69*a^2-384*a+1922)^(1/2)*a-252*(-12*a^4+68*a^3+69*a^2-384*a+1922)^(1/2))^(1/3))*3^(1/2)]
好难解啊