设n阶矩阵A的伴随矩阵为A* 证明:|A*|=|A|^(n-1)

求过程!谢谢!
2024-12-21 20:26:06
推荐回答(2个)
回答1:

大家都不帮你我来帮你
因为AA* =|A|E ,两边同时乘A逆,
有 A*=|A|A逆,两边同时取行列式,
有|A*|=||A|A逆|=|A|^(N)|A逆|
又因为
|A逆|=|A|分之一(这个就不用给你推了吧。A乘A逆=E,左乘A逆取行列式可证明)
把最后那个公式带入
有|A|^(N)|A逆|=|A|^(N-1)
所以|A*|=|A|^(N-1)
证毕。记得给我分啊。不会可以给我留言

回答2:

一楼证明不好,A不可逆没有证明。
http://zhidao.baidu.com/question/30325581.html?fr=qrl
看看这个问题,可知:
A不可逆时,adj(A)也不可逆,所以结论成立。