∵两个正实数x,y满足 2 x + 1 y =1,∴x+2y=(x+2y)( 2 x + 1 y )=4+ 4y x + x y ≥4+2 4y x ? x y =8,当且仅当x=2y=4时取等号.∵x+2y≥m2-2m恒成立,∴(x+2y)min≥m2?2m,∴m2-2m≤8,解得-2≤m≤4.∴实数m的取值范围是[-2,4].故选:B.