∫x³/√(1+x^4)^7dx = (1/4)∫1/√(1+x^4)^7d(1+x^4), 令 u = 1+x^4
= (1/4)(2/9)(1+x^4)^(9/2) + C = (1/18)(1+x^4)^(9/2) + C
let
x^2= tanu
2x dx = (secu)^2 du
∫x^3/(1+x^4)^(7/2) dx
=(1/2) ∫ [x^2/(1+x^4)^(7/2)] (2xdx)
=(1/2) ∫ [ tanu/ (secu)^7 ] [(secu)^2 du]
=(1/2) ∫ [ tanu/ (secu)^5 ] du
=(1/2) ∫ [ sinu . (cosu)^4 ] du
=-(1/2) ∫ (cosu)^4 dcosu
=-(1/10) (cosu)^5 + C
=-(1/10) [1/√(1+x^4)]^5 + C