天文望远镜能观测到的最远距离是200亿光年,这是总星系的范围.通常把我们观测所及的宇宙部分称为总星系.也有人认为,总星系是一个比星系更高一级的天体层次,它的尺度可能小于、等于或大于观测所及的宇宙部分.总星系的典型尺度约100亿光年,年龄为100亿年量级.通过星系计数和微波背景辐射测量证明总星系的物质和运动的分布在统计上是均匀和各向同性的,不存在任何特殊的位置和方向.总星系物质含量最多的是氢,其次是氦.从1914年以来,发现星系谱线有系统的红移.如果把它解释为天体退行的结果,那就表示总星系在均匀地膨胀着.总星系的结构和演化,是宇宙学研究的重要对象.有一种观点认为,总星系是2×10e10年以前在一次大爆炸中形成的.这种大爆炸宇宙学解释了不少观测事实(元素的丰度、微波背景辐射、红移等).另一种观点则认为,现今的总星系是由更大的系统坍缩后形成的,但这种观点并不能解释微波背景辐射.
望远镜能够探测到几亿光年甚至更远距离的星体是因为这些星体发出的电磁波过几亿年传递到了地球,然后被天文望远镜观测到。这里只提及两种望远镜,一种是光学望远镜,另一种是射电望远镜。
总的来说,两种望远镜探测的都是电磁波,只不过二者探测的电磁波的频率是不同的。光学望远镜探测的是可见光,即所谓的看到了星体本身;射电望远镜探测的是射电波,射电波属于无线电波的一种,无线电波又是频率比可见光低的电磁波。但是二者的具体探测方法也有所区别,以下会有具体分
光学望远镜观测的光是由恒星发出的,但这其中许多恒星都早已不存在,我们看到的是几十亿年前发出的光。光学望远镜又分为反射式、反射式和折反射式天文望远镜。顾名思义,折射式望远镜的原理是利用凸透镜的成像原理,看到的也是实像;反射式望远镜的原理是利用平面镜反射,看到的是虚像;折反式望远镜是将二者结合在一起,看到的也是虚像。
再来看射电望远镜,它属于专业的天文台观测使用的望远镜,它通过接受星体发出的射电波,然后记录下关键的数据,包括天体射电的强度、频谱、偏振等,同时还配备有专业的信息处理系统对收集的信息进行处理。在这样的条件下,可以观测到普通光学望远镜观测不到的星体,比如脉冲星、类星体、星际有机分子等等。
一般现在看的最远的可以看到130亿光年.就是哈勃空间望远镜。
从理论上讲,天文望远镜能看多远是没有限制的,天文望远镜能看多远是和他的口径有关