如何对变限积分函数求导?

2024-12-27 08:04:15
推荐回答(4个)
回答1:

最常见的是变上限函数的积分,即∫f(t)dt(积分限a到x),根据映射的观点,每给一个x就积分出一个实数,因此这是关于x的一元函数,记为g(x)=∫f(t)dt(积分限a到x),注意积分变量用什么符号都不影响积分值,改用t是为了不与上限x混淆。

现在用导数定义求g'(x),根据定义,g'(x)=lim[∫f(t)dt-∫f(t)dt]/h(h趋于0,积分限前者为a到x+h,后者为a到x)=lim∫f(t)dt/h(积分限x到x+h,根据的是积分的区间可加性),根据积分中值定理,存在ξ属于(x,x+h),使得∫f(t)dt/h=f(ξ)h,又因为h趋于0时ξ是趋于x的,故极限=limf(ξ)h/h=f(x),至此证明了g'(x)=f(x)。

扩展资料

如果函数f(x)在区间[a,b]上连续,则积分变上限函数在[a,b]上具有导数,并且导数为:

证明过程如下:

参考资料

百度百科-变限积分函数

回答2:

最常见的是变上限函数的积分,即∫f(t)dt(积分限a到x),根据映射的观点,每给一个x就积分出一个实数,因此这是关于x的一元函数,记为g(x)=∫f(t)dt(积分限a到x),注意积分变量用什么符号都不影响积分值,改用t是为了不与上限x混淆。现在用导数定义求g'(x),根据定义,g'(x)=lim[∫f(t)dt-∫f(t)dt]/h(h趋于0,积分限前者为a到x+h,后者为a到x)=lim∫f(t)dt/h(积分限x到x+h,根据的是积分的区间可加性),根据积分中值定理,存在ξ属于(x,x+h),使得∫f(t)dt/h=f(ξ)h,又因为h趋于0时ξ是趋于x的,故极限=limf(ξ)h/h=f(x),至此证明了g'(x)=f(x)。对于最一般形式的变限积分,其积分的上下限都可以是函数,分别用u(x)和v(x)表示,即g(x)=∫f(t)dt(积分限v(x)到u(x)),用类似的方法可以证明,g'(x)=u'(x)f[u(x)]-v'(x)f[v(x)],这是最一般的变限积分求导公式,任何变限积分求导问题都可用此式解决。

回答3:

变限积分求导过程与复合函数求导类似.

回答4: