1/1+(sinx)^2=1/[((sinx)^2+(cosx)^2)+(sinx)^2]=1/[2(sinx)^2+(cosx)^2]=(1/(cosx)^2) /[1+2(tanx)^2]=(secx)^2 /[1+2(tanx)^2]所以原积分=4∫(0->π/2) (secx)^2 /[1+2(tanx)^2] dx=4∫d(tanx)//[1+2(tanx)^2]=2√2arctan[√2tanx] |(0,π/2)=2√2(π/2-0)=√2π