重点搞好以下七大块的分类复习。
1、数的认识(整数和小数、数的整除、分数百分数)
知识要点包括“数的意义”、“数的读法与写法”、“数的改写”、“数的大小比较”、“数的整除”“小数、分数、百分数的互化”“约分和通分”等知识点。 重点确定在数的意义概念的理解,数的读写,数的整除。
本部分重点加强数学基本概念和基本性质的理解和掌握。具体通过一系列的练习,如填空题、选择题、判断题为主,适当穿插进行整数和小数的简单计算、约分和通分练习。复习本部分知识教师应该根据学生的实际学习水平灵活处理,对于班级基础较差的学生可适当放慢,万事开头难,本部分知识必须做到教一点使学生会一点,切忌贪多图快。复习题可参考以前的专项复习题或专项复习试卷。
2、四则运算(四则运算的意义与法则、运算定律与简便计算、四则混合运算、简易方程)。
这节重点四则运算和简便运算上。 全面概括四则运算和计算方法,提高计算水平和计算能力,包括“四则运算的意义和法则”、“四则混合运算”。 利用运算定律,掌握简便运算,提高计算效率,包括“运算定律和简便运算”。 结合教材按照先复习(整数、小数、分数)四则运算意义和运算法则,要求教师结合教材必须搞好学生相关的口算训练和基本的四则运算练习,然后再复习(整数、小数、分数)的四则混合运算,教师要加强四则混合运算中运算顺序的教学,在此基础上教师要精心设计练习,提高学生综合计算能力。第三,要搞好运算定律与简便计算复习,三种运算定律要求学生熟练掌握。最后,在简易方程复习中,教师要重点规范学生的答题行为,解方程必须写解。本部分练习题可参考以前下发的专项复习题。
3、量的计量
本节重点放在名数的改写和实际观念上。
(1)、整理量的计量知识结构,包括“长度、面积、体积单位”、“重量与时间单位”。
(2)、巩固计量单位,强化实际观念,包括“名数的改写”。
(3)、综合训练与应用,练习题可刻印或参考试卷。
4、几何初步知识(线和角、平面图形、立体图形)
本节重点放在对特征的辨析和对公式的应用上。
(1)、强化概念理解和系统化,包括“平面图形的特征”、“立体图形的特征”。
(2)、准确把握图形特征,加强对比分析,揭示知识间的联系与区别,包括“平面图形的周长与面积”、“立体图形的表面积和体积”。
(3)、加强对公式的应用,提高掌握计算方法。能让学生对周长、面积、体积进行的正确计算。
(4)、整体感知、实际应用。
练习题可刻印或参考试卷。
5、比和比例(比的意义和性质、比例的意义和性质、正比例和反比例)
本部分要求学生掌握比和比例意义和性质的同时,必须做到使学生正确辨析概念,加深理解,包括“比和比例”、“正比例和反比例”,会判断简单的正、反比例。重点要求学生掌握求比值、化简比,按比例分配,应用比例尺计算,解比例。在练习中很抓解题训练,提高解方程和解比例的能力,包括“简易方程”、“解比例”。
练习题可刻印或参考试卷。
6、简单的统计
本节重点结合考纲要求应放在对图表的认识和理解上,能回答一些简单的问题。
(1)、求平均数的方法。
(2)、加深统计图表的特点和作用的认识,包括“统计表”、“统计图”。
(3)、进一步对图表分析和回答问题,包括填图和根据图表回答问题。(本部分是复习的重点)
练习题可参考教材或试卷。
7、应用题解(整数和小数应用题、分数和百分数应用题、列方程解应用题、比和比例应用题)
这部分重点应放在应用题的分析和解题技能的发展上,难点内容是分数应用题。
(1)、简单应用题的分析与整理。 (一步计算)
(2)、复合应用题的分析与整理。 (两步以上)
(3)、列方程解应用题的分析与整理。
(4)、分数应用题的分析与整理。(重点)
(5)、用比例知识解答应用题的分析与整理。
(6)、应用题的综合训练。
设分子为x,分母为y,列出方程(x-3)÷y=0.5,x÷(y+6)=0.5我们会得到x=0.5y+3这样的关系式,但发现怎么做都没有准确唯一答案,所以只要满足x=0.5y+3这样的关系的分数都是正确的。
当然是有知识性的
有分数的加减法
课本借出来了再借别人的不就行了