3X+189=521
4Y+119=22
3X*189=5
8Z/6=458
3X+77=59
4Y-6985=81
87X*13=5
7Z/93=41
15X+863-65X=54
58Y*55=27489
z*(z-3)=4
方程x2= 的根为 。
2、 方程(x+1)2-2(x-1)2=6x-5的一般形式是 。
3、 关于x的一元二次方程x2+mx+3=0的一个根是1,则m的值为 。
4、 已知二次三项式x2+2mx+4-m2是一个完全平方式,则m= 。
5、 已知 +(b-1)2=0,当k为 时,方程kx2+ax+b=0有两个不等的实数根。
6、 关于x的方程mx2-2x+1=0只有一个实数根,则m= 。
7、 请写出一个根为1,另一个根满足-1
8、 关于x的方程x2-(2m2+m-6)x-m=0两根互为相反数,则m= 。
9、 已知一元二次方程(a-1)x2+x+a2-1=0的两根为x1,x2,且x1+x2= ,则x1,x2= 。
10某木材场原有木材存量为a立方米,已知木材每年以20%的增长率生长,到每年冬天砍伐的木材量为x立方米,则经过一年后木材存量为 立方米,经过两年后,木材场木材存量为b立方米,试写出a,b,m之间的关系式: 。
二、选择题:(3’×8=24’)
11、关于x的方程(m+1)x2+2mx-3=0是一元二次方程,则m的取值是( )
A、任意实数 B、m≠1 C、m≠-1 D、m>-1
12、下面是某同学在一次数学测验中解答的填空题,其中答对的是( )
A、 若x2=4,则x=2 B、若3x2=bx,则x=2
C、 x2+x-k=0的一个根是1,则k=2
D、若分式 的值为零,则x=2
13、方程(x+3)(x-3)=4的根的情况是( )
A、无实数根 B、有两个不相等的实数根 C、两根互为倒数 D、两根互为相反数
14、一元二次方程x2-3x-1=0与x2+4x+3=0的所有实数根的和等于( )。
A、-1 B、-4 C、4 D、3
15、已知方程( )2-5( )+6=0,设 =y则可变为( )。
A、y2+5y+6=0 B、y2-5y+6=0 C、y2+5y-6=0 D、y2-5y-6=0
16、某超市一月份的营业额为100万元,第一季度的营业额共800万元,如果平均每月增长率为x,则所列方程应为( )
A、100(1+x)2=800 B、100+100×2x=800 C、100+100×3x=800 D、100[1+(1+x)+(1+x)2]=800
17、已知一元二次方程2x2-3x+3=0,则( )
A、两根之和为-1.5 B、两根之差为-1.5 C、两根之积为-1.5 D、无实数根
18、已知a2+a2-1=0,b2+b2-1=0且a≠b,则ab+a+b=( )
A、2 B、-2 C、-1 D、0
三、解下列方程:(5’×5=25’)
19、(x-2)2-3=0 20、2x2-5x+1=0(配方法)
21、x(8+x)=16 22、
23、(2x-3)2-2(2x-3)-3=0
四、解答题。
24、已知三角形的两边长分别是3和8,第三边的数值是一元二次方程x2-17x+66=0的根。求此三角形的周长。(6’)
25、某灯具店采购了一批某种型号的节能灯,共用去400元,在搬运过程中不慎打碎了5盏,该店把余下的灯每盏加价4元全部售出,然后用所得的钱又采购了一批这种节能灯,且进价与上次相同,但购买的数量比上次多了9盏,求每盏灯的进价。(6’)
26、在Rt△ABC中,∠C=90°,斜边C=5,两直角边的长a,b是关于x的一元二次方程x2-mx+2m-2=0的两根,(1)求m的值(2)求△ABC的面积(3)求较小锐角的正弦值。
α、β是方程 的两根,则α+β=__________,αβ=__________, __________, __________。
2.如果3是方程 的一个根,则另一根为__________,a=__________。
3.方程 两根为-3和4,则ab=__________。
4.以 和 为根的一元二次方程是__________。
5.若矩形的长和宽是方程 的两根,则矩形的周长为__________,面积为__________。
6.方程 的根的倒数和为7,则m=__________。
二、选择题
1.满足两实根和为4的方程是( )。
(A) (B)
(C) (D)
2.若k>1,则关于x的方程 的根的情况是( )。
(A)有一正根和一负根 (B)有两个正根
(C)有两个负根 (D)没有实数根
3.已知两数和为-6,两数积为2,则这两数为( )。
(A) , (B) ,
(C) , (D) ,
4.若方程 两根之差的绝对值为8,则p的值为( )。
(A)2 (B)-2
(C)±2 (D)
三、解答题
1.已知 、 是方程 的两个实数根,且 ,求k的值。
2.不解方程,求作一个新的一元二次方程,使它的两根分别为方程 两根的平方。
3.如果关于x的方程 的两个实数根都小于1,求m的取值范围。
4.m为何值时,方程
(1)两根互为倒数;
(2)有两个正根;
(3)有一个正根一个负根。
解方程(1)(3x+1)2=7 (2)9x2-24x+16=11
用配方法解方程 3x2-4x-2=0
用公式法解方程 2x2-8x=-5
用因式分解法解下列方程:
(1) (x+3)(x-6)=-8 (2) 2x2+3x=0
(3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学)
用适当的方法解下列方程。(选学)
(1)4(x+2)2-9(x-3)2=0 (2)x2+(2-)x+ -3=0
(3) x2-2 x=- (4)4x2-4mx-10x+m2+5m+6=0
求方程3(x+1)2+5(x+1)(x-4)+2(x-4)2=0的二根。
用配方法解关于x的一元二次方程x2+px+q=0
一)用适当的方法解下列方程:
1. 6x2-x-2=0 2. (x+5)(x-5)=3
3. x2-x=0 4. x2-4x+4=0
5. 3x2+1=2x 6. (2x+3)2+5(2x+3)-6=0
(二)解下列关于x的方程
1.x2-ax+-b2=0 2. x2-( + )ax+ a2=0
选择题
1.方程x(x-5)=5(x-5)的根是( )
A、x=5 B、x=-5 C、x1=x2=5 D、x1=x2=-5
2.多项式a2+4a-10的值等于11,则a的值为( )。
A、3或7 B、-3或7 C、3或-7 D、-3或-7
3.若一元二次方程ax2+bx+c=0中的二次项系数,一次项系数和常数项之和等于零,那么方程必有一个
根是( )。
A、0 B、1 C、-1 D、±1
4. 一元二次方程ax2+bx+c=0有一个根是零的条件为( )。
A、b≠0且c=0 B、b=0且c≠0
C、b=0且c=0 D、c=0
5. 方程x2-3x=10的两个根是( )。
A、-2,5 B、2,-5 C、2,5 D、-2,-5
6. 方程x2-3x+3=0的解是( )。
A、 B、 C、 D、无实根
7. 方程2x2-0.15=0的解是( )。
A、x= B、x=-
C、x1=0.27, x2=-0.27 D、x1=, x2=-
8. 方程x2-x-4=0左边配成一个完全平方式后,所得的方程是( )。
A、(x-)2= B、(x- )2=-
C、(x- )2= D、以上答案都不对
9. 已知一元二次方程x2-2x-m=0,用配方法解该方程配方后的方程是( )。
A、(x-1)2=m2+1 B、(x-1)2=m-1 C、(x-1)2=1-m D、(x-1)2=m+1
用直接开平方法解方程(x-3)2=8得方程的根为( )
(A)x=3+2 (B)x=3-2
(C)x1=3+2 ,x2=3-2 (D)x1=3+2,x2=3-2
一、填空题:(每空3分,共30分)
1、方程(x-1)(2x+1)=2化成一般形式是 ,它的二次项系数是 .
2、关于x的方程是(m2-1)x2+(m-1)x-2=0,那么当m 时,方程为一元二次方程;
当m 时,方程为一元一次方程.
3、若方程 有增根,则增根x=__________,m= .
4、(2003贵阳)已知方程 有两个相等的实数根,则锐角 =___________.
5、若方程kx2-6x+1=0有两个实数根,则k的取值范围是 .
6、设x1、x2是方程3x2+4x-5=0的两根,则 .x12+x22= .
7、关于x的方程2x2+(m2-9)x+m+1=0,当m= 时,两根互为倒数;
当m= 时,两根互为相反数.
8、若x1 = 是二次方程x2+ax+1=0的一个根,则a= ,
该方程的另一个根x2 = .
9、方程x2+2x+a-1=0有两个负根,则a的取值范围是 .
10、若p2-3p-5=0,q2-3q-5=0,且p≠q,则 .
二、选择题:(每小题3分,共15分)
1、方程 的根的情况是( )
(A)方程有两个不相等的实数根 (B)方程有两个相等的实数根
(C)方程没有实数根 (D)方程的根的情况与 的取值有关
2、已知方程 ,则下列说中,正确的是( )
(A)方程两根和是1 (B)方程两根积是2
(C)方程两根和是-1 (D)方程两根积是两根和的2倍
3、已知方程 的两个根都是整数,则 的值可以是( )
(A)-1 (B)1 (C)5 (D)以上三个中的任何一个
4、如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3、x2=1,那么这个一元二次方程是( )
A. x2+3x+4=0 B. x2-4x+3=0 C. x2+4x-3=0 D. x2+3x-4=0
5、用配方法解下列方程时,配方有错误的是( )
A.x2-2x-99=0化为(x-1)2=100 B.x2+8x+9=0化为(x+4)2=25
C.2t2-7t-4=0化为 D.3y2-4y-2=0化为
三、解下列方程:(每小题5分,共30分)
(1) (2)
(3) (4)4x2-8x+1=0(用配方法)
(5) 3x2+5(2x+1)=0(用公式法) (6)
四、(本题6分)
(2003宁夏)某化肥厂去年四月份生产化肥500吨,因管理不善,五月份的产量减少了10%.从六月起强化管理,产量逐月上升,七月份产量达到648吨.那么,该厂六、七两月产量平均增长的百分率是多少?
五、(本题6分)
有一间长为20米,宽为15米的会议室,在它们中间铺一块地毯为,地毯的面积是会议室面积的一半,四周未铺地毯的留空宽度相同,则留空宽度为多少米?
六、(本题6分)
(2003南京)某灯具店采购了一批某种型号的节能灯,共用去400元.在搬运过程中不慎打碎了5盏,该店把余下的灯每盏加价4元全部售出,然后用所得的钱又采购了一批这种节能灯,且进价与上次相同,但购买的数量比上次多了9盏.求每盏灯的进价.
七、(本题12分,其中第(1)问7分,第(2)问是附加题5分)
(2003潍坊) 如图所示,△ABC中,AB=6厘米,BC=8厘米,∠B=90°,点P从点A开始沿AB边向B以1厘米/秒的速度移动,点Q从B点开始沿BC边向点C以2厘米/秒的速度移动.
(1) 如果P、Q分别从A、B同时出发,经过几秒,使△PBQ的面积等于8平方厘米?
(2) (附加题)如果P、Q分别从A、B出发,并且P到B后又继续在BC边上前进,经过几秒,使△PCQ的面积等于12.6平方厘米?
一、填空题:(每空3分,共30分)
1、方程(x–1)(2x+1)=2化成一般形式是 ,它的二次项系数是 .
2、关于x的方程是(m2–1)x2+(m–1)x–2=0,那么当m 时,方程为一元二次方程;
当m 时,方程为一元一次方程.
3、若方程 有增根,则增根x=__________,m= .
4、(2003贵阳)已知方程 有两个相等的实数根,则锐角 =___________.
5、若方程kx2–6x+1=0有两个实数根,则k的取值范围是 .
6、设x1、x2是方程3x2+4x–5=0的两根,则 .x12+x22= .
7、关于x的方程2x2+(m2–9)x+m+1=0,当m= 时,两根互为倒数;
当m= 时,两根互为相反数.
8、若x1 = 是二次方程x2+ax+1=0的一个根,则a= ,
该方程的另一个根x2 = .
9、方程x2+2x+a–1=0有两个负根,则a的取值范围是 .
10、若p2–3p–5=0,q2-3q–5=0,且p≠q,则 .
二、选择题:(每小题3分,共15分)
1、方程 的根的情况是( )
(A)方程有两个不相等的实数根 (B)方程有两个相等的实数根
(C)方程没有实数根 (D)方程的根的情况与 的取值有关
2、已知方程 ,则下列说中,正确的是( )
(A)方程两根和是1 (B)方程两根积是2
(C)方程两根和是-1 (D)方程两根积是两根和的2倍
3、已知方程 的两个根都是整数,则 的值可以是( )
(A)—1 (B)1 (C)5 (D)以上三个中的任何一个
4、如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3、x2=1,那么这个一元二次方程是( )
A. x2+3x+4=0 B. x2-4x+3=0 C. x2+4x-3=0 D. x2+3x-4=0
5、用配方法解下列方程时,配方有错误的是( )
A.x2-2x-99=0化为(x-1)2=100 B.x2+8x+9=0化为(x+4)2=25
C.2t2-7t-4=0化为 D.3y2-4y-2=0化为
三、解下列方程:(每小题5分,共30分)
(1) (2)
(3) (4)4x2–8x+1=0(用配方法)
(5) 3x2+5(2x+1)=0(用公式法) (6)
四、(本题6分)
(2003宁夏)某化肥厂去年四月份生产化肥500吨,因管理不善,五月份的产量减少了10%.从六月起强化管理,产量逐月上升,七月份产量达到648吨.那么,该厂六、七两月产量平均增长的百分率是多少?
五、(本题6分)
有一间长为20米,宽为15米的会议室,在它们中间铺一块地毯为,地毯的面积是会议室面积的一半,四周未铺地毯的留空宽度相同,则留空宽度为多少米?
六、(本题6分)
(2003南京)某灯具店采购了一批某种型号的节能灯,共用去400元.在搬运过程中不慎打碎了5盏,该店把余下的灯每盏加价4元全部售出,然后用所得的钱又采购了一批这种节能灯,且进价与上次相同,但购买的数量比上次多了9盏.求每盏灯的进价.
七、(本题12分,其中第(1)问7分,第(2)问是附加题5分)
(2003潍坊) 如图所示,△ABC中,AB=6厘米,BC=8厘米,∠B=90°,点P从点A开始沿AB边向B以1厘米/秒的速度移动,点Q从B点开始沿BC边向点C以2厘米/秒的速度移动.
(1) 如果P、Q分别从A、B同时出发,经过几秒,使△PBQ的面积等于8平方厘米?
(2) (附加题)如果P、Q分别从A、B出发,并且P到B后又继续在BC边上前进,经过几秒,使△PCQ的面积等于12.6平方厘米?
01.已知三角形ABC的两边AB AC的长度是关于一元二次方程
x^2-(2k+2)x+k^2=0的的两个根,第三边长为10,问K为何值时三角形ABC为等腰三角形?
02.证明关于x的方程(m^2-8m+17)x^2+2mx+1=0 无论m为任何值,该方程都为一元二次方程
若a为有理数,试探求当b为何值时,关于x的一元二次方程x^2+3(a-1)x+(2a^2+a+b)=0的根为有理数?
2.设关于y的一元二次方程3(m-2)y^2-2(m+1)y-m=0有正整数根,试探求满足条件的整数m
1.已知a是关于x的一元二次方程x2-3x+m=0的一个根,-a是关于x的一元二次方程x2+3x-m=0.试求a的值.
2.如果我们知道方程(k2+2)x2+(5-k)x=1-3kx2 是关于x的一元二次方程.那么你能求得k的值吗?
3(x2+3x+4)(x2+3x+5)=6.通过仔细观察.巧妙解题(不准展开解题.)
4已知m.n是关于x的方程x2-(p-2)x+1=0的两个实数根,求代数式(m2+mp+1)(n2+np+1)的值
1.已知方程x+1/x=a+1/a的2根分别为a,1/a,则方程x+1/(x-1)=a+1/(a-1)的根是_______.
2.若a=3,b=2,则以a,b伟根的一元二次方程(二次项系数为一)是_________.
3.已知方程x^2-2x-1=0的2根是1+√2,1-√2,则分解因式:x^2-2x-1=________.
4.已知方程x^(K-2)+(k-2)x^2+x-k=0,当k取何值时,方程是一元二次方程?
1、 使实系数二次方程2mx[2]+(4m+1)x+2m=0有两个不相等的实数根的m的范围是( )
2、 满足方程x[2]+b[2]=(a-x)[2]的x的值是( )
3、 关于x的方程x[2]-(2a-1)x+a=5的一个解是1,则a的值为( )
4、 a,b,c为不全是0的3个实数,那么关于x的一元二次方程x[2]+(a+b+c)x+(a[2]+b[2]+c[2])=0的根的情况是( )
a 有2个负根 b 有两个正根 c 有2个异号实根 d 无实根
5、 满足x[2]+7x+c=0有实根的最大整数c是( )
6、 方程x[2]+1993x-1994=0和(1994x)[2]-1993·1995x-1=0的较小根依次为a,b,求ab的值
设关于x的一元二次方程x平方+px+q=0的两个根为A,B,且A,B满足lgA+lgB=2,lg(A+B)=2-2lg6+lg9,求一元二次方程及A,B的值!
1、已知a、b 为方程2x*x-5x+1=0的根,不解方程,求值:
(1)1/a+1/b (2)|a-b|
2、已知一元二次方程x*x-2mx-5+2m=0 的两根之差的绝对值等于4倍根号2,求m
方程 (m-3)x^(m^-7) +(m-2)+5=0
(1)m为何值时,方程是一元二次方程;
(2)m为何值时,方程是一元一次方程
X的2a+b次方-2×x的a-b次方+3=0是关于x的一元二次方程,求a、b的值。
已知a、b是一元二次方程x^2+2001x+1=0的两个根,则(1+2003a+a^2)(1+2003b+b^2)=( )
a、1 b、2
c、3 d、4
已知,a、b是一元二次方程x^2+px-1=0的两个实数跟,且3ab+b^2+2=8b。求p的值。
如果关于x的一元二次方程(ax+1)(x-a)=a-2的各项系数之和为3,求a的值,并解此方程
已知一元二次方程(ab-2b)x^2+2(b-a)x+2a-b=0有两个相等的实数根,求1/a+1/b
注:X^2表示X的平方
3X+189=521
4Y+119=22
3X*189=5
8Z/6=458
3X+77=59
4Y-6985=81
87X*13=5
7Z/93=41
15X+863-65X=54
58Y*55=27489
z*(z-3)=4
方程x2= 的根为 。
2、 方程(x+1)2-2(x-1)2=6x-5的一般形式是 。
3、 关于x的一元二次方程x2+mx+3=0的一个根是1,则m的值为 。
4、 已知二次三项式x2+2mx+4-m2是一个完全平方式,则m= 。
5、 已知 +(b-1)2=0,当k为 时,方程kx2+ax+b=0有两个不等的实数根。
6、 关于x的方程mx2-2x+1=0只有一个实数根,则m= 。
7、 请写出一个根为1,另一个根满足-1
8、 关于x的方程x2-(2m2+m-6)x-m=0两根互为相反数,则m= 。
9、 已知一元二次方程(a-1)x2+x+a2-1=0的两根为x1,x2,且x1+x2= ,则x1,x2= 。
10某木材场原有木材存量为a立方米,已知木材每年以20%的增长率生长,到每年冬天砍伐的木材量为x立方米,则经过一年后木材存量为 立方米,经过两年后,木材场木材存量为b立方米,试写出a,b,m之间的关系式: 。
二、选择题:(3’×8=24’)
11、关于x的方程(m+1)x2+2mx-3=0是一元二次方程,则m的取值是( )
A、任意实数 B、m≠1 C、m≠-1 D、m>-1
12、下面是某同学在一次数学测验中解答的填空题,其中答对的是( )
A、 若x2=4,则x=2 B、若3x2=bx,则x=2
C、 x2+x-k=0的一个根是1,则k=2
D、若分式 的值为零,则x=2
13、方程(x+3)(x-3)=4的根的情况是( )
A、无实数根 B、有两个不相等的实数根 C、两根互为倒数 D、两根互为相反数
14、一元二次方程x2-3x-1=0与x2+4x+3=0的所有实数根的和等于( )。
A、-1 B、-4 C、4 D、3
15、已知方程( )2-5( )+6=0,设 =y则可变为( )。
A、y2+5y+6=0 B、y2-5y+6=0 C、y2+5y-6=0 D、y2-5y-6=0
16、某超市一月份的营业额为100万元,第一季度的营业额共800万元,如果平均每月增长率为x,则所列方程应为( )
A、100(1+x)2=800 B、100+100×2x=800 C、100+100×3x=800 D、100[1+(1+x)+(1+x)2]=800
17、已知一元二次方程2x2-3x+3=0,则( )
A、两根之和为-1.5 B、两根之差为-1.5 C、两根之积为-1.5 D、无实数根
18、已知a2+a2-1=0,b2+b2-1=0且a≠b,则ab+a+b=( )
A、2 B、-2 C、-1 D、0
三、解下列方程:(5’×5=25’)
19、(x-2)2-3=0 20、2x2-5x+1=0(配方法)
21、x(8+x)=16 22、
23、(2x-3)2-2(2x-3)-3=0
四、解答题。
24、已知三角形的两边长分别是3和8,第三边的数值是一元二次方程x2-17x+66=0的根。求此三角形的周长。(6’)
25、某灯具店采购了一批某种型号的节能灯,共用去400元,在搬运过程中不慎打碎了5盏,该店把余下的灯每盏加价4元全部售出,然后用所得的钱又采购了一批这种节能灯,且进价与上次相同,但购买的数量比上次多了9盏,求每盏灯的进价。(6’)
26、在Rt△ABC中,∠C=90°,斜边C=5,两直角边的长a,b是关于x的一元二次方程x2-mx+2m-2=0的两根,(1)求m的值(2)求△ABC的面积(3)求较小锐角的正弦值。
α、β是方程 的两根,则α+β=__________,αβ=__________, __________, __________。
2.如果3是方程 的一个根,则另一根为__________,a=__________。
3.方程 两根为-3和4,则ab=__________。
4.以 和 为根的一元二次方程是__________。
5.若矩形的长和宽是方程 的两根,则矩形的周长为__________,面积为__________。
6.方程 的根的倒数和为7,则m=__________。
二、选择题
1.满足两实根和为4的方程是( )。
(A) (B)
(C) (D)
2.若k>1,则关于x的方程 的根的情况是( )。
(A)有一正根和一负根 (B)有两个正根
(C)有两个负根 (D)没有实数根
3.已知两数和为-6,两数积为2,则这两数为( )。
(A) , (B) ,
(C) , (D) ,
4.若方程 两根之差的绝对值为8,则p的值为( )。
(A)2 (B)-2
(C)±2 (D)
三、解答题
1.已知 、 是方程 的两个实数根,且 ,求k的值。
2.不解方程,求作一个新的一元二次方程,使它的两根分别为方程 两根的平方。
3.如果关于x的方程 的两个实数根都小于1,求m的取值范围。
4.m为何值时,方程
(1)两根互为倒数;
(2)有两个正根;
(3)有一个正根一个负根。
解方程(1)(3x+1)2=7 (2)9x2-24x+16=11
用配方法解方程 3x2-4x-2=0
用公式法解方程 2x2-8x=-5
用因式分解法解下列方程:
(1) (x+3)(x-6)=-8 (2) 2x2+3x=0
(3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学)
用适当的方法解下列方程。(选学)
(1)4(x+2)2-9(x-3)2=0 (2)x2+(2-)x+ -3=0
(3) x2-2 x=- (4)4x2-4mx-10x+m2+5m+6=0
求方程3(x+1)2+5(x+1)(x-4)+2(x-4)2=0的二根。
用配方法解关于x的一元二次方程x2+px+q=0
一)用适当的方法解下列方程:
1. 6x2-x-2=0 2. (x+5)(x-5)=3
3. x2-x=0 4. x2-4x+4=0
5. 3x2+1=2x 6. (2x+3)2+5(2x+3)-6=0
(二)解下列关于x的方程
1.x2-ax+-b2=0 2. x2-( + )ax+ a2=0
选择题
1.方程x(x-5)=5(x-5)的根是( )
A、x=5 B、x=-5 C、x1=x2=5 D、x1=x2=-5
2.多项式a2+4a-10的值等于11,则a的值为( )。
A、3或7 B、-3或7 C、3或-7 D、-3或-7
3.若一元二次方程ax2+bx+c=0中的二次项系数,一次项系数和常数项之和等于零,那么方程必有一个
根是( )。
A、0 B、1 C、-1 D、±1
4. 一元二次方程ax2+bx+c=0有一个根是零的条件为( )。
A、b≠0且c=0 B、b=0且c≠0
C、b=0且c=0 D、c=0
5. 方程x2-3x=10的两个根是( )。
A、-2,5 B、2,-5 C、2,5 D、-2,-5
6. 方程x2-3x+3=0的解是( )。
A、 B、 C、 D、无实根
7. 方程2x2-0.15=0的解是( )。
A、x= B、x=-
C、x1=0.27, x2=-0.27 D、x1=, x2=-
8. 方程x2-x-4=0左边配成一个完全平方式后,所得的方程是( )。
A、(x-)2= B、(x- )2=-
C、(x- )2= D、以上答案都不对
9. 已知一元二次方程x2-2x-m=0,用配方法解该方程配方后的方程是( )。
A、(x-1)2=m2+1 B、(x-1)2=m-1 C、(x-1)2=1-m D、(x-1)2=m+1
用直接开平方法解方程(x-3)2=8得方程的根为( )
(A)x=3+2 (B)x=3-2
(C)x1=3+2 ,x2=3-2 (D)x1=3+2,x2=3-2
一、填空题:(每空3分,共30分)
1、方程(x-1)(2x+1)=2化成一般形式是 ,它的二次项系数是 .
2、关于x的方程是(m2-1)x2+(m-1)x-2=0,那么当m 时,方程为一元二次方程;
当m 时,方程为一元一次方程.
3、若方程 有增根,则增根x=__________,m= .
4、(2003贵阳)已知方程 有两个相等的实数根,则锐角 =___________.
5、若方程kx2-6x+1=0有两个实数根,则k的取值范围是 .
6、设x1、x2是方程3x2+4x-5=0的两根,则 .x12+x22= .
7、关于x的方程2x2+(m2-9)x+m+1=0,当m= 时,两根互为倒数;
当m= 时,两根互为相反数.
8、若x1 = 是二次方程x2+ax+1=0的一个根,则a= ,
该方程的另一个根x2 = .
9、方程x2+2x+a-1=0有两个负根,则a的取值范围是 .
10、若p2-3p-5=0,q2-3q-5=0,且p≠q,则 .
二、选择题:(每小题3分,共15分)
1、方程 的根的情况是( )
(A)方程有两个不相等的实数根 (B)方程有两个相等的实数根
(C)方程没有实数根 (D)方程的根的情况与 的取值有关
2、已知方程 ,则下列说中,正确的是( )
(A)方程两根和是1 (B)方程两根积是2
(C)方程两根和是-1 (D)方程两根积是两根和的2倍
3、已知方程 的两个根都是整数,则 的值可以是( )
(A)-1 (B)1 (C)5 (D)以上三个中的任何一个
4、如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3、x2=1,那么这个一元二次方程是( )
A. x2+3x+4=0 B. x2-4x+3=0 C. x2+4x-3=0 D. x2+3x-4=0
5、用配方法解下列方程时,配方有错误的是( )
A.x2-2x-99=0化为(x-1)2=100 B.x2+8x+9=0化为(x+4)2=25
C.2t2-7t-4=0化为 D.3y2-4y-2=0化为
三、解下列方程:(每小题5分,共30分)
(1) (2)
(3) (4)4x2-8x+1=0(用配方法)
(5) 3x2+5(2x+1)=0(用公式法) (6)
四、(本题6分)
(2003宁夏)某化肥厂去年四月份生产化肥500吨,因管理不善,五月份的产量减少了10%.从六月起强化管理,产量逐月上升,七月份产量达到648吨.那么,该厂六、七两月产量平均增长的百分率是多少?
五、(本题6分)
有一间长为20米,宽为15米的会议室,在它们中间铺一块地毯为,地毯的面积是会议室面积的一半,四周未铺地毯的留空宽度相同,则留空宽度为多少米?
六、(本题6分)
(2003南京)某灯具店采购了一批某种型号的节能灯,共用去400元.在搬运过程中不慎打碎了5盏,该店把余下的灯每盏加价4元全部售出,然后用所得的钱又采购了一批这种节能灯,且进价与上次相同,但购买的数量比上次多了9盏.求每盏灯的进价.
七、(本题12分,其中第(1)问7分,第(2)问是附加题5分)
(2003潍坊) 如图所示,△ABC中,AB=6厘米,BC=8厘米,∠B=90°,点P从点A开始沿AB边向B以1厘米/秒的速度移动,点Q从B点开始沿BC边向点C以2厘米/秒的速度移动.
(1) 如果P、Q分别从A、B同时出发,经过几秒,使△PBQ的面积等于8平方厘米?
(2) (附加题)如果P、Q分别从A、B出发,并且P到B后又继续在BC边上前进,经过几秒,使△PCQ的面积等于12.6平方厘米?
一、填空题:(每空3分,共30分)
1、方程(x–1)(2x+1)=2化成一般形式是 ,它的二次项系数是 .
2、关于x的方程是(m2–1)x2+(m–1)x–2=0,那么当m 时,方程为一元二次方程;
当m 时,方程为一元一次方程.
3、若方程 有增根,则增根x=__________,m= .
4、(2003贵阳)已知方程 有两个相等的实数根,则锐角 =___________.
5、若方程kx2–6x+1=0有两个实数根,则k的取值范围是 .
6、设x1、x2是方程3x2+4x–5=0的两根,则 .x12+x22= .
7、关于x的方程2x2+(m2–9)x+m+1=0,当m= 时,两根互为倒数;
当m= 时,两根互为相反数.
8、若x1 = 是二次方程x2+ax+1=0的一个根,则a= ,
该方程的另一个根x2 = .
9、方程x2+2x+a–1=0有两个负根,则a的取值范围是 .
10、若p2–3p–5=0,q2-3q–5=0,且p≠q,则 .
二、选择题:(每小题3分,共15分)
1、方程 的根的情况是( )
(A)方程有两个不相等的实数根 (B)方程有两个相等的实数根
(C)方程没有实数根 (D)方程的根的情况与 的取值有关
2、已知方程 ,则下列说中,正确的是( )
(A)方程两根和是1 (B)方程两根积是2
(C)方程两根和是-1 (D)方程两根积是两根和的2倍
3、已知方程 的两个根都是整数,则 的值可以是( )
(A)—1 (B)1 (C)5 (D)以上三个中的任何一个
4、如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3、x2=1,那么这个一元二次方程是( )
A. x2+3x+4=0 B. x2-4x+3=0 C. x2+4x-3=0 D. x2+3x-4=0
5、用配方法解下列方程时,配方有错误的是( )
A.x2-2x-99=0化为(x-1)2=100 B.x2+8x+9=0化为(x+4)2=25
C.2t2-7t-4=0化为 D.3y2-4y-2=0化为
三、解下列方程:(每小题5分,共30分)
(1) (2)
(3) (4)4x2–8x+1=0(用配方法)
(5) 3x2+5(2x+1)=0(用公式法) (6)
四、(本题6分)
(2003宁夏)某化肥厂去年四月份生产化肥500吨,因管理不善,五月份的产量减少了10%.从六月起强化管理,产量逐月上升,七月份产量达到648吨.那么,该厂六、七两月产量平均增长的百分率是多少?
五、(本题6分)
有一间长为20米,宽为15米的会议室,在它们中间铺一块地毯为,地毯的面积是会议室面积的一半,四周未铺地毯的留空宽度相同,则留空宽度为多少米?
六、(本题6分)
(2003南京)某灯具店采购了一批某种型号的节能灯,共用去400元.在搬运过程中不慎打碎了5盏,该店把余下的灯每盏加价4元全部售出,然后用所得的钱又采购了一批这种节能灯,且进价与上次相同,但购买的数量比上次多了9盏.求每盏灯的进价.
七、(本题12分,其中第(1)问7分,第(2)问是附加题5分)
(2003潍坊) 如图所示,△ABC中,AB=6厘米,BC=8厘米,∠B=90°,点P从点A开始沿AB边向B以1厘米/秒的速度移动,点Q从B点开始沿BC边向点C以2厘米/秒的速度移动.
(1) 如果P、Q分别从A、B同时出发,经过几秒,使△PBQ的面积等于8平方厘米?
(2) (附加题)如果P、Q分别从A、B出发,并且P到B后又继续在BC边上前进,经过几秒,使△PCQ的面积等于12.6平方厘米?
01.已知三角形ABC的两边AB AC的长度是关于一元二次方程
x^2-(2k+2)x+k^2=0的的两个根,第三边长为10,问K为何值时三角形ABC为等腰三角形?
02.证明关于x的方程(m^2-8m+17)x^2+2mx+1=0 无论m为任何值,该方程都为一元二次方程
若a为有理数,试探求当b为何值时,关于x的一元二次方程x^2+3(a-1)x+(2a^2+a+b)=0的根为有理数?
2.设关于y的一元二次方程3(m-2)y^2-2(m+1)y-m=0有正整数根,试探求满足条件的整数m
1.已知a是关于x的一元二次方程x2-3x+m=0的一个根,-a是关于x的一元二次方程x2+3x-m=0.试求a的值.
2.如果我们知道方程(k2+2)x2+(5-k)x=1-3kx2 是关于x的一元二次方程.那么你能求得k的值吗?
3(x2+3x+4)(x2+3x+5)=6.通过仔细观察.巧妙解题(不准展开解题.)
4已知m.n是关于x的方程x2-(p-2)x+1=0的两个实数根,求代数式(m2+mp+1)(n2+np+1)的值
1.已知方程x+1/x=a+1/a的2根分别为a,1/a,则方程x+1/(x-1)=a+1/(a-1)的根是_______.
2.若a=3,b=2,则以a,b伟根的一元二次方程(二次项系数为一)是_________.
3.已知方程x^2-2x-1=0的2根是1+√2,1-√2,则分解因式:x^2-2x-1=________.
4.已知方程x^(K-2)+(k-2)x^2+x-k=0,当k取何值时,方程是一元二次方程?
1、 使实系数二次方程2mx[2]+(4m+1)x+2m=0有两个不相等的实数根的m的范围是( )
2、 满足方程x[2]+b[2]=(a-x)[2]的x的值是( )
3、 关于x的方程x[2]-(2a-1)x+a=5的一个解是1,则a的值为( )
4、 a,b,c为不全是0的3个实数,那么关于x的一元二次方程x[2]+(a+b+c)x+(a[2]+b[2]+c[2])=0的根的情况是( )
a 有2个负根 b 有两个正根 c 有2个异号实根 d 无实根
5、 满足x[2]+7x+c=0有实根的最大整数c是( )
6、 方程x[2]+1993x-1994=0和(1994x)[2]-1993·1995x-1=0的较小根依次为a,b,求ab的值
设关于x的一元二次方程x平方+px+q=0的两个根为A,B,且A,B满足lgA+lgB=2,lg(A+B)=2-2lg6+lg9,求一元二次方程及A,B的值!
1、已知a、b 为方程2x*x-5x+1=0的根,不解方程,求值:
(1)1/a+1/b (2)|a-b|
2、已知一元二次方程x*x-2mx-5+2m=0 的两根之差的绝对值等于4倍根号2,求m
方程 (m-3)x^(m^-7) +(m-2)+5=0
(1)m为何值时,方程是一元二次方程;
(2)m为何值时,方程是一元一次方程
X的2a+b次方-2×x的a-b次方+3=0是关于x的一元二次方程,求a、b的值。
已知a、b是一元二次方程x^2+2001x+1=0的两个根,则(1+2003a+a^2)(1+2003b+b^2)=( )
a、1 b、2
c、3 d、4
已知,a、b是一元二次方程x^2+px-1=0的两个实数跟,且3ab+b^2+2=8b。求p的值。
如果关于x的一元二次方程(ax+1)(x-a)=a-2的各项系数之和为3,求a的值,并解此方程
已知一元二次方程(ab-2b)x^2+2(b-a)x+2a-b=0有两个相等的实数根,求1/a+1/b
注:X^2表示X的平方
已知a^m=4,a^n=3,求a^2m+n和a^m-3n的值。
a^2m+n=a^2m*a^n=(a^m)^2*a^n=4^2*3=48
a^m-3n=a^m/a^3n=a^m/(a^n)^3=4/3^3=4/27
把甲、乙两种原料按a:b的质量混合调成一种混合饮料,要调制4kg这种混合饮料。需甲种原料______kg,
需乙种原料_______kg。
1+(-2)+3+(-4)+···+(-1)的n+1次方*n
甲骑自行车从A到B,乙骑自行车从B到A,俩人匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米。求AB之间路程
现对某商品降价10%促销,为了使销售总金额不变,销售量要比按原价销售时增加百分之几?
有一些相同的房间需要粉刷墙面一天3名一级技工去粉刷8个房间,结果其中有50平方米墙面未来的及刷;同样时间内5名二级技工刷10个房间之外,还多刷了40平方米墙面,每名一级技工比二级技工多刷10平方米,求每个房间需刷的面积
1、-15+6÷(-3)×1/2 2、(1/4-1/2+1/6)×24
3、|-5/14|×(-3/7)2÷3/14 4、2/3+(-1/5)-1+1/3
23+(-73)
(-84)+(-49)
7+(-2.04)
4.23+(-7.57)
(-7/3)+(-7/6)
9/4+(-3/2)
3.75+(2.25)+5/4
-3.75+(+5/4)+(-1.5)
(17/4)+(-10/3)+(+13/3)+(11/3) (2)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)
4.6-(-3/4+1.6-4-3/4)
1/2+3+5/6-7/12
[2/3-4-1/4*(-0.4)]/1/3+2
22+(-4)+(-2)+4*3
-2*8-8*1/2+8/1/8
(2/3+1/2)/(-1/12)*(-12)
(-28)/(-6+4)+(-1)
2/(-2)+0/7-(-8)*(-2)
(1/4-5/6+1/3+2/3)/1/2
18-6/(-3)*(-2)
(5+3/8*8/30/(-2)-3
(-84)/2*(-3)/(-6)
1/2*(-4/15)/2/3
-3x+2y-5x-7y
-5+21*8/2-6-59
68/21-8-11*8+61
-2/9-7/9-56
4.6-(-3/4+1.6-4-3/4)
1/2+3+5/6-7/12
[2/3-4-1/4*(-0.4)]/1/3+2
22+(-4)+(-2)+4*3
-2*8-8*1/2+8/1/8
(2/3+1/2)/(-1/12)*(-12)
(-28)/(-6+4)+(-1)
2/(-2)+0/7-(-8)*(-2)
(1/4-5/6+1/3+2/3)/1/2
18-6/(-3)*(-2)
(5+3/8*8/30/(-2)-3
(-84)/2*(-3)/(-6)
1/2*(-4/15)/2/3
-3x+2y-5x-7y
-5+21*8/2-6-59
68/21-8-11*8+61
-2/9-7/9-56
4.6-(-3/4+1.6-4-3/4)
1/2+3+5/6-7/12
[2/3-4-1/4*(-0.4)]/1/3+2
22+(-4)+(-2)+4*3
-2*8-8*1/2+8/1/8
(2/3+1/2)/(-1/12)*(-12)
(-28)/(-6+4)+(-1)
2/(-2)+0/7-(-8)*(-2)
(1/4-5/6+1/3+2/3)/1/2
18-6/(-3)*(-2)
(5+3/8*8/30/(-2)-3
(-84)/2*(-3)/(-6)
1/2*(-4/15)/2/3
-3x+2y-5x-7y
-1+2-3+4-5+6-7;
50-28+(-24)-(-22);
19.8-(-20.3)-(+20.2)-10.8;
0.25- +(-1 )-(+3 ).
-1-23.33-(+76.76);
1-2*2*2*2;
(-6-24.3)-(-12+9.1)+(0-2.1);
-1+8-7
(1) (2) 12—(—18)+(—7)—15
(3) (4) -2 +|5-8|+24÷(-3)
26. -0.5÷ =( )
27. -15÷ ×(-5)=( )
28. -32 + (-2) 2 =( )
23+(-73)
(-84)+(-49)
7+(-2.04)
4.23+(-7.57)
(-7/3)+(-7/6)
9/4+(-3/2)
3.75+(2.25)+5/4
-3.75+(+5/4)+(-1.5)
(17/4)+(-10/3)+(+13/3)+(11/3)
(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)
4.6-(-3/4+1.6-4-3/4)
1/2+3+5/6-7/12
[2/3-4-1/4*(-0.4)]/1/3+2
22+(-4)+(-2)+4*3
-2*8-8*1/2+8/1/8
(2/3+1/2)/(-1/12)*(-12)
(-28)/(-6+4)+(-1)
2/(-2)+0/7-(-8)*(-2)
(1/4-5/6+1/3+2/3)/1/2
18-6/(-3)*(-2)
(5+3/8*8/30/(-2)-3
(-84)/2*(-3)/(-6)
1/2*(-4/15)/2/3
-3x+2y-5x-7y
-5+21*8/2-6-59
68/21-8-11*8+61
-2/9-7/9-56
4.6-(-3/4+1.6-4-3/4)
1/2+3+5/6-7/12
[2/3-4-1/4*(-0.4)]/1/3+2
22+(-4)+(-2)+4*3
-2*8-8*1/2+8/1/8
(2/3+1/2)/(-1/12)*(-12)
(-28)/(-6+4)+(-1)
2/(-2)+0/7-(-8)*(-2)
(1/4-5/6+1/3+2/3)/1/2
18-6/(-3)*(-2)
(5+3/8*8/30/(-2)-3
(-84)/2*(-3)/(-6)
1/2*(-4/15)/2/3
-3x+2y-5x-7y
-5+21*8/2-6-59
68/21-8-11*8+61
-2/9-7/9-56
4.6-(-3/4+1.6-4-3/4)
1/2+3+5/6-7/12
[2/3-4-1/4*(-0.4)]/1/3+2
22+(-4)+(-2)+4*3
-2*8-8*1/2+8/1/8
(2/3+1/2)/(-1/12)*(-12)
(-28)/(-6+4)+(-1)
2/(-2)+0/7-(-8)*(-2)
(1/4-5/6+1/3+2/3)/1/2
18-6/(-3)*(-2)
(5+3/8*8/30/(-2)-3
(-84)/2*(-3)/(-6)
1/2*(-4/15)/2/3
-3x+2y-5x-7y
-1+2-3+4-5+6-7;
50-28+(-24)-(-22);
19.8-(-20.3)-(+20.2)-10.8;
0.25- +(-1 )-(+3 ).
-1-23.33-(+76.76);
1-2*2*2*2;
(-6-24.3)-(-12+9.1)+(0-2.1);
-1+8-7 )23+(-73)
(2)(-84)+(-49)
(3)7+(-2.04)
(4)4.23+(-7.57)
(5)(-7/3)+(-7/6)
(6)9/4+(-3/2)
(7)3.75+(2.25)+5/4
(8)-3.75+(+5/4)+(-1.5)
(9)(-17/4)+(-10/3)+(+13/3)+(11/3)
(10)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)
(11)(+1.3)-(+17/7)
(12)(-2)-(+2/3)
(13)|(-7.2)-(-6.3)+(1.1)|
(14)|(-5/4)-(-3/4)|-|1-5/4-|-3/4|)
(15)(-2/199)*(-7/6-3/2+8/3)
(16)4a)*(-3b)*(5c)*1/6
还有50道题,不过没有答案
1. 3/7 × 49/9 - 4/3
2. 8/9 × 15/36 + 1/27
3. 12× 5/6 – 2/9 ×3
4. 8× 5/4 + 1/4
5. 6÷ 3/8 – 3/8 ÷6
6. 4/7 × 5/9 + 3/7 × 5/9
7. 5/2 -( 3/2 + 4/5 )
8. 7/8 + ( 1/8 + 1/9 )
9. 9 × 5/6 + 5/6
10. 3/4 × 8/9 - 1/3
0.12χ+1.8×0.9=7.2 (9-5χ)×0.3=1.02 6.4χ-χ=28+4.4
11. 7 × 5/49 + 3/14
12. 6 ×( 1/2 + 2/3 )
13. 8 × 4/5 + 8 × 11/5
14. 31 × 5/6 – 5/6
15. 9/7 - ( 2/7 – 10/21 )
16. 5/9 × 18 – 14 × 2/7
17. 4/5 × 25/16 + 2/3 × 3/4
18. 14 × 8/7 – 5/6 × 12/15
19. 17/32 – 3/4 × 9/24
20. 3 × 2/9 + 1/3
21. 5/7 × 3/25 + 3/7
22. 3/14 ×× 2/3 + 1/6
23. 1/5 × 2/3 + 5/6
24. 9/22 + 1/11 ÷ 1/2
25. 5/3 × 11/5 + 4/3
26. 45 × 2/3 + 1/3 × 15
27. 7/19 + 12/19 × 5/6
28. 1/4 + 3/4 ÷ 2/3
29. 8/7 × 21/16 + 1/2
30. 101 × 1/5 – 1/5 × 21
31.50+160÷40 (58+370)÷(64-45)
32.120-144÷18+35
33.347+45×2-4160÷52
34(58+37)÷(64-9×5)
35.95÷(64-45)
36.178-145÷5×6+42 420+580-64×21÷28
37.812-700÷(9+31×11) (136+64)×(65-345÷23)
38.85+14×(14+208÷26)
39.(284+16)×(512-8208÷18)
40.120-36×4÷18+35
41.(58+37)÷(64-9×5)
42.(6.8-6.8×0.55)÷8.5
43.0.12× 4.8÷0.12×4.8
44.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6
45.6-1.6÷4= 5.38+7.85-5.37=
46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=
47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9
48.10.15-10.75×0.4-5.7
49.5.8×(3.87-0.13)+4.2×3.74
50.32.52-(6+9.728÷3.2)×2.5
51.-5+58+13+90+78-(-56)+50
52.-7*2-57/(3
53.(-7)*2/(1/3)+79/(3+6/4)
54.123+456+789+98/(-4)
55.369/33-(-54-31/15.5)
56.39+{3x[42/2x(3x8)]}
57.9x8x7/5x(4+6)
58.11x22/(4+12/2)
59.94+(-60)/10
只找到这些了:-)
30分少点
、(1/4-1/2+1/6)×24