求定积分∫(0→1)x ⼀(1+√x ) dx

2025-02-23 21:48:19
推荐回答(2个)
回答1:

回答2:

令√x=t,则x=t²,dx=2tdt
原式=∫[0,1]2t³/(1+t)*dt
=2∫[0,1][t²-t+1-1/(t+1)]dt
=2/3*t³|[0,1]-t²|[0,1]+2t|[0,1]-2ln(1+t)|[0,1]
=2/3-1+2-2ln2
=ln4+5/3