设A(x1,y1)、B(x2,y2),
∵A、B两点在椭圆
+x2 4
=1上,∴y2 2
,
+x12 4
=1y12 2
+x22 4
=1y22 2
两式相减可得:
(x12-x22)+1 4
(y12-y22)=0,化简得1 2
=-
y1?y2
x1?x2
.
x1+x2
2(y1+y2)
又∵点P(1,1)是AB的中点,∴x1+x2=2,y1+y2=2,
因此可得直线l的斜率k=
=-
y1?y2
x1?x2
=-
x1+x2
2(y1+y2)
.1 2
故答案为:-
1 2