解:分享一种解法。用无穷小量替换“简化’"[]"中的表达式。
∵x→0时,ln(1+x)~x+(1/2)x^2,e^x~1+x,∴(1+x)^(1/x)=e^[(1/x)ln(1+x)]~e^(1+x/2)=e*e^(x/2)~e(1+x/2),
∴x+(1+x)^[(1/x)(1+x)^(1/x)]~x+(1+x)^[e(1+x/2)/x]~x+e^e,
∴lnlnln(x+(1+x)^[(1/x)(1+x)^(1/x)])~lnlnln(x+e^e)=lnlnln[e^e(1+x/e^e)~lnln[e+ln(1+x/e^e)]~lnln(e+x/e^e)=lnln[e(1+x/e^(e+1)]=ln{1+ln[1+x/e^(e+1)]}~ln[1+x/e^(e+1)]~x/e^(e+1),
∴原式=lim(x→0)x/x^2=∞。供参考。