比较长,但难度不是太高,请放心吧。
Generally speaking, network analysis is any structured technique used to mathematically analyze a circuit (a “network” of interconnected components).一般来说,网络分析是用于数学分析一个回路(一个由互连起来的元件构成的“网络”)的任何结构性技术 Quite often the technician or engineer will encounter circuits containing multiple sources of power or component configurations which defy simplification by series/parallel analysis techniques. 技术人员和工程师们往往会碰到包含多个电源或元件配置的的回路,它们违反了利用串联/并联分析技术进行简化的常规。In those cases, he or she will be forced to use other means. Branch Current Method and Mesh Current Method are useful techniques in analyzing such complex circuits. 在这些情况下,他或她将被迫采用其它手段。支路电流法和网孔电流法就是分析这类复杂回路的有用技术。
The first and most straightforward network analysis technique is called the Branch Current Method. 首要的,也是最直接的网络分析技术称为支流电流法。In this method, we assume directions of currents in a network, then write equations describing their relationships to each other through Kirchhoff’s and Ohm’s Laws. 在这一方法中,我们假设网络中电流的方向,然后通过基尔霍夫定律和欧姆定律写出描述它们相互之间关系的方程式。Once we have one equation for every unknown current, and therefore all voltage drops in the network. 一旦我们对应每一个未知电流,并因此对应网络中的所有电压降都有一个方程式。(这里有没有漏掉内容?)
Let’s use this circuit, shown in Fig.2.6, to illustrate the method.
The first step is to choose a node (junction of wires) in the circuit to use as a point of reference for our unknown currents. 让我们用图2.6所示的这一回路来说明这种方法。第一步是选择回路中的一个节点(导线的接合点),用作我们未知的电流的一个参照点I’ll choose the node joining the left of R1¬¬, the top of R2, and the right of R3. See Fig.2.7. 我将选择连接左面R1,顶部R2和右面R3的节点。参见图2.7.
At this node, guess which directions the three wires’ currents take, labeling the three currents as I1, I2, and I3, respectively. See Fig.2.8.在这一节点,猜测三根导线的电流走什么方向,将三股电流分别标为I1、I2、I3。参见图2.8.
Bear in mind that these directions of current are speculative at this point.记住,这些电流的方向在这一点是推测的。 Fortunately, if it turns out that any of four guesses were wrong, we will know when we mathematically solve for the currents (any “wrong” current directions will show up as negative numbers in our solution). 幸好,如æ