满足x^2+y^2=16的点(x,y)的轨迹是以原点为圆心,4为半径的圆.
令t=x+y,
y=-x+t.则
问题转化成求直线y=-x+t的纵截距t的范围.
由图形知,
-4√2≤t≤4√2.
x+y的取值范围是[-4√2,4√2].
也可用三角法,设x=4cosα,…
x^2+y^2=16》(x+y)^2/4
=>(x+y)^2《64
=>-8《(x+y)《8
设:z=x+y
y=z-x
x^2+(z-x)^2=16
x^2+z^2-2zx+x^2=16
2x^2-2zx+(z^2-16)=0
△=4z^2-4*2(z^2-16)=-4z^2+144≥0
z^2≤36
-6≤z≤6
即:x+y的取值范围是:-6≤x+y≤6