解得:
c^2=3/2
a^2=1/2
b^2=1/2
ab+bc+ca
=((a+b+c)^2 -(aa+bb+cc))/2
=1/2(a+b+c)^2 - 5/4
当(a+b+c)^2最小时,得到最小值,
显然是当c为负,a,b为正;或a,b为负,c为正时,
a+b+c离0最近
(a+b+c)^2 = (-√(3/2) + √2)^2 = 7/2 - 2√3
所以最小值:
1/2-√3
选B
c^2=3/2
a^2=1/2
b^2=1/2
你说ab+bc+ca多少!最多试8次!
D
绝对
选c