在教一年级“比谁多,比谁少”应用题时,有少部分学生在做题时看到“多”字就用加法,看到“少”字就用减法做,
如题目:苹果有47个,苹果比桔子少2个,桔子有多少个?
部分学生就会算成47-2=45(个)。
我让学生再读几次题,但是有部分学生换一下形式又不会做了。
分析原因:这部分学生未能很好的抽象出题目的意思,他们的思维处于形象思维阶段。
那么,怎样才能让学生更直观的理解呢?我思考了一下,觉得用画线段图的方法更能让学生理解。
(1) 学会找“标准”
上课前我先举例子,“老师比小红高”,以谁作为标准? 答案:小红
“小红比老师矮”,以谁作为标准?答案:老师
比 谁 这个“谁”就是标准。
(2) 学会画线段图
如上题 苹果有47个,苹果比桔子少2个,桔子有多少个?
这题以 桔子 为标准
桔子: ?个
47个 少2个
苹果: -- -- --
通过看这个线段图,学生很容易看出苹果比桔子少,要求桔子就要用加法。
举例,比如:这里有5个苹果,我吃了一个,还剩几个。`(*∩_∩*)′
小猫有10条鱼又抓了12条共有几条?
小小有18个苹果又买了19个,小小有几个苹果?
是这种题吗?
梨子有30kg,它比苹果少十分之一。问:苹果有多少kg?
有一堆1元的硬币,5个5个和6个6个得数,都正好数完,这堆硬币至少有都少个?
答案:5乘6等于30个
求大小数相差多少用减法.
求小的数用减法.
求大数用加法.
先要出答案吧,然后……找等量关系……然后把数字代进去,看看对不对。
教的时候么尽量把题目简单化。对了!要读题目,慢慢的,给学生思考的过程。
还有,先教学生看要求的是什么,知道了什么,这些数据有什么关系(有什么隐含的条件,例单价×数量=总价)。要让他们小心计算。
差不多就这些了
1、甲乙两车同时从AB两地相对开出。甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。求AB两地相距多少千米 ?
解:AB距离=(4.5×5)/(5/11)=49.5千米
2、一辆客车和一辆货车分别从甲乙两地同时相向开出。货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。甲乙两地相距多少千米?
解:客车和货车的速度之比为5:4
那么相遇时的路程比=5:4
相遇时货车行全程的4/9
此时货车行了全程的1/4
距离相遇点还有4/9-1/4=7/36
那么全程=28/(7/36)=144千米
3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。求乙绕城一周所需要的时间?
解:甲乙速度比=8:6=4:3
相遇时乙行了全程的3/7
那么4小时就是行全程的4/7
所以乙行一周用的时间=4/(4/7)=7小时
4、甲乙两人同时从A地步行走向B地,当甲走了全程的1\4时,乙离B地还有640米,当甲走余下的5\6时,乙走完全程的7\10,求AB两地距离是多少米?
解:甲走完1/4后余下1-1/4=3/4
那么余下的5/6是3/4×5/6=5/8
此时甲一共走了1/4+5/8=7/8
那么甲乙的路程比=7/8:7/10=5:4
所以甲走全程的1/4时,乙走了全程的1/4×4/5=1/5
那么AB距离=640/(1-1/5)=800米
5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。甲车每小时行75千米,乙车行完全程需7小时。两车开出3小时后相距15千米,A,B两地相距多少千米?
解:一种情况:此时甲乙还没有相遇
乙车3小时行全程的3/7
甲3小时行75×3=225千米
AB距离=(225+15)/(1-3/7)=240/(4/7)=420千米
一种情况:甲乙已经相遇
(225-15)/(1-3/7)=210/(4/7)=367.5千米
6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟已相遇?
解:甲相当于比乙晚出发3+3+3=9分钟
将全部路程看作单位1
那么甲的速度=1/30
乙的速度=1/20
甲拿完东西出发时,乙已经走了1/20×9=9/20
那么甲乙合走的距离1-9/20=11/20
甲乙的速度和=1/20+1/30=1/12
那么再有(11/20)/(1/12)=6.6分钟相遇
7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?
解:路程差=36×2=72千米
速度差=48-36=12千米/小时
乙车需要72/12=6小时追上甲
8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度?
解:
甲在相遇时实际走了36×1/2+1×2=20千米
乙走了36×1/2=18千米
那么甲比乙多走20-18=2千米
那么相遇时用的时间=2/0.5=4小时
所以甲的速度=20/4=5千米/小时
乙的速度=5-0.5=4.5千米/小时
9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?
解:速度和=60+40=100千米/小时
分两种情况,
没有相遇
那么需要时间=(400-100)/100=3小时
已经相遇
那么需要时间=(400+100)/100=5小时
10、甲每小时行驶9千米,乙每小时行驶7千米。两者在相距6千米的两地同时向背而行,几小时后相距150千米?
解:速度和=9+7=16千米/小时
那么经过(150-6)/16=144/16=9小时相距150千米
7、甲、乙两人生产一批零件,甲、乙工作效率的比是2:1,两人共同生产了3天后,剩下的由乙单独生产2天就全部完成了生产任务,这时甲比乙多生产了14个零件,这批零件共有多少个?
解:将乙的工作效率看作单位1
那么甲的工作效率为2
乙2天完成1×2=2
乙一共生产1×(3+2)=5
甲一共生产2×3=6
所以乙的工作效率=14/(6-5)=14个/天
甲的工作效率=14×2=28个/天
一共有零件28×3+14×5=154个
或者设甲乙的工作效率分别为2a个/天,a个/天
2a×3-(3+2)a=14
6a-5a=14
a=14
一共有零件28×3+14×5=154个
8、一个工程项目,乙单独完成工程的时间是甲队的2倍;甲乙两队合作完成工程需要20天;甲队每天工作费用为1000元,乙每天为550元,从以上信息,从节约资金角度,公司应选择哪个?应付工程队费用多少?
解:甲乙的工作效率和=1/20
甲乙的工作时间比=1:2
那么甲乙的工作效率比=2:1
所以甲的工作效率=1/20×2/3=1/30
乙的工作效率=1/20×1/3=1/60
甲单独完成需要1/(1/30)=30天
乙单独完成需要1/(1/60)=60天
甲单独完成需要1000×30=30000元
乙单独完成需要550×60=33000元
甲乙合作完成需要(1000+550)×20=31000元
很明显
甲单独完成需要的钱数最少
选择甲,需要付30000元工程费。
9、一批零件,甲乙两人合做5.5天可以超额完成这批零件的0.1,现在先由甲做2天,后由后由甲乙合作两天,最后再由乙接着做4天完成任务,这批零件如果由乙单独做几天可以完成?
解:将全部零件看作单位1
那么甲乙的工作效率和=(1+0.1)/5.5=1/5
整个过程是甲工作2+2=4天
乙工作2+4=6天
相当于甲乙合作4天,完成1/5×4=4/5
那么乙单独做6-4=2天完成1-4/5=1/5
所以乙单独完成需要2/(1/5)=10天
10、有一项工程要在规定日期内完成,如果甲工程队单独做正好如期完成,如果乙工程队单独做就要超过5天才能完成。现由甲、乙两队合作3天,余下的工程由乙队单独做正好按期完成,问规定日期是多少天?
解:甲做3天相当于乙做5天
甲乙的工作效率之比=5:3
那么甲乙完成时间之比=3:5
所以甲完成用的时间是乙的3/5
所以乙单独完成需要5/(1-3/5)=5/(2/5)=12.5天
规定时间=12.5-5=7.5天
11、一项工程,甲队单独做20天完成,乙队单独做30天完成,现在乙队先做5天后,剩下的由甲、乙两队合作,还需要多少天完成?
解:乙5天完成5×1/30=1/6
甲乙合作的工作效率=1/20+1/30=1/6
那么还需要(1-1/6)/(1/6)=(5/6)/(1/6)=5天
14、一项工程,甲队20人单独做要25天,如果要20天完成,还需再加多少人?
解:将每个人的工作量看作单位1
还需要增加1×25×20/(1×20)-20=25-20=5人
15、一项工程,甲先做3天,然后乙加入,4天后完成的这项工程的3分之1,10天后完成的这项工程的4分之3。甲因有事调走,剩余全都让乙做。一共做了多少天?
解:根据题意
甲乙合作开始是4天完成1/3,后来是10天完成3/4
所以甲乙合作10-4=6天完成3/4-1/3=5/12
所以甲乙的工作效率和=(5/12)/6=5/72
那么甲的工作效率=(1/3-5/72×4)/3=(1/3-5/18)/3=1/54
乙的工作效率=5/72-1/54=11/216
那么乙完成剩下的需要(1-3/4)/(11/216)=54/11天
一共做了3+10+54/11=17又10/11天
16、甲乙做相同零件各做了16天后甲还需64个乙还需384个才能完成乙比甲的工作效率少百分之40,求甲的效率?
解:设甲的工作效率为a个/天,则乙为(1-40%)a=0.6a个/天
根据题意
16a+64=0.6a×16+384
16×0.4a=320
0.4a=20
a=50个/天
甲的工作效率为50个/天
算术法:
乙比甲每天少做40%
那么16天少做384-64=320个
每天少做320/16=20个
那么甲的工作效率=20/40%=50个/天
17、张师傅每工作6天休息1天,王师傅每工作5天休息2天。现有一项工程,张师傅独做需97天,李师傅需75天,如果两人合作,一共需多少天?
解:
97除以7等于13余6,13*6=78,78+6=84个工作日
75除以7等于10余5,10*5=50,50+5=55个工作日
张师傅每工作日完成1/84,每周完成6/84=1/14
王师傅每工作日完成1/55,每周完成5/55=1/11
两人合作每工作日完成139/4620,每周完成25/154
6周完成150/154,还剩4/154
(4/154)/(139/4620)=120/139
所以,6周零一天,43天
18、甲乙丙三人共同完成一项工程,3天完成了全部的1/5,然后甲休息了3天,乙休息了2天,丙没休息,如果甲一天的工作量是丙一天工作量的3倍,乙一天的工作量是丙一天工作量的4倍,那么这项工作从开始算起多少天完成?
解:甲乙丙的工作效率和=(1/5)/3=1/15
丙的工作效率=(1/15)/(3+4+1)=1/120
甲的工作效率=1/120×3=1/40
乙的工作效率=1/120×4=1/30
这里把丙的工作效率看作1倍数
甲休息3天,乙休息2天这段时间一共完成
1/30+1/120×3=7/120
那么剩下的还需要(1-1/5-7/120)/(1/15)=89/8天
一共需要3+3+89/8=17又1/8天
19、一项工程,甲独做30天,乙独做20天完成,甲先做了若干天后,由乙接替,甲乙共做22天,甲乙各做几天?
解:乙的工作效率=1/20
乙22天完成1/20×22=11/10
多完成11/10-1=1/10
乙的工作效率和甲的工作效率之差=1/20-1/30=1/60
所以甲做了(1/10)/(1/60)=6天
乙做了22-6=12天
按照鸡兔同笼问题考虑
到新华书店买一本奥数教材书和练习就可以了,根据书来教孩子,还有和学校同步的奥数书也不错。
目标正确就是指制定的教学目标既要符合课程标准的要求,又要符合学生的实际情况。教学目标是设计教学过程的依据,是课堂教学的总的指导思想,是上课的出发点,也是进行课堂教学的终极回宿。如何制定出一个具体明确又切实可行的教学目标呢?首先要认真钻研教材,结合数学课程目标和教学内容,制定出本节课的教学计划:要使学生把握哪些知识、形成什么样的技能技巧、达到什么样的熟练程度、会用哪些方法解题等,这就是双基目标。其次是考虑通过这些知识的教学,应该培养学生哪些思维能力,这是思维能力的目标。再次是想一想通过这些知识的教学,对学生进行哪些思想教育,培养哪些良好的道德品质,这是渗透思想教育的要求。最后是考虑哪些地方可以对学生进行创新教育,怎样培养学生的创新意识和创造能力,这是创新教育的要求,这也是课堂教学最重要的目标。