∫(e->e^2) ln(r^2) r dr
=(1/2)∫(e->e^2) ln(r^2) dr^2
=(1/2)[r^2.ln(r^2)]|(e->e^2) -(1/2)∫(e->e^2) r^2.[1/(r^2)](2r) dr
=2e^4-e^2 - ∫(e->e^2) r dr
=2e^4-e^2 - (1/2)[r^2]|e->e^2)
=2e^4-e^2 - (1/2)(e^4-e^2)
=(3/2)e^4 -(1/2)e^2
∫(0->2π) dθ∫(e->e^2) ln(r^2) r dr
=∫(0->2π) [ (3/2)e^4 -(1/2)e^2 ] dθ
=( 3e^4 -e^2 ).π
I = ∫<0, 2π>dθ∫
= 2π∫
= 2π(2e^2-e) - 2π∫
= 2π(2e^2-e) - π[e^2-e] = πe(3e-1)