从数学的角度来看,连续函数一定有原函数这个已经是得到证明的了,但这个原函数不一定能写成初等函数的形式。
气温随时间变化,只要时间变化很小,气温的变化也是很小的;又如,自由落体的位移随时间变化,只要时间变化足够短,位移的变化也是很小的。
对于这种现象,我们说因变量关于自变量是连续变化的,连续函数在直角坐标系中的图像是一条没有断裂的连续曲线。由极限的性质可知,一个函数在某点连续的充要条件是它在该点左右都连续。
扩展资料:
在函数极限的定义中曾经强调过,当x→x0时f(x)有没有极限,与f(x)在点x0处是否有定义并无关系。但由于现在函数在x0处连续,则表示f(x0)必定存在,显然当Δx=0(即x=x0)时Δy=0<ε。于是上述推导过程中可以取消0<|Δx|这个条件。
若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。
函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,
故若函数f(x)有原函数,那么其原函数为无穷多个。
设f(x)在[a,b]上连续,则由 曲线y=f(x),x轴及直线x=a,x=b围成的曲边梯形的面积函数(指代数和——x轴上方取正号,下方取负号)是f(x)的一个原函数.若x为时间变量,f(x)为直线运动的物体的速度函数,则f(x)的原函数就是路程函数。
参考资料来源:百度百科——连续函数
设f(x)在区间[a,b]上连续.在开区间(a,b)内任意取一点x,求f(x)在[a,x]上的定积分.
定积分就是求面积,所以当积分上下限确定了以後,面积也就确定下来了.那现在上限x发生变化,面积是不是也跟著变?那麼我以面积为因变量,积分上限为自变量,就定义了一个新的函数F(x).这个F(x),就是f(x)的一个原函数.
从数学的角度来看,连续函数一定有原函数这个已经是得到证明的了,但这个原函数不一定能写成初等函数的形式。
简单分析一下,答案如图所示