一、结合法
一个数连续乘两个一位数,可根据情况改写成用这个数乘这两个数的积的形式,使计算简便。
例1 计算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在计算时,添加一个小括号可以使计算简便。因为括号前是乘号,所以括号内不变号。
二、分解法
一个数乘一个两位数,可根据情况把这个两位数分解成两个一位数相乘的形式,再用这个数连续乘两个一位数,使计算简便。
例2 计算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
将18分解成2×9的形式,再将括号去掉,使计算简便。
三、拆数法
有些题目,如果一步一步地进行计算,比较麻烦,我们可以根据因数及其他数的特征,灵活运用拆数法进行简便计算。
例3 计算:99×99+199
(1)在计算时,可以把199写成99+100的形式,由此得到第一种简便算法:
99×99+199
=99×99+99+100
=99×(99+1)+100
=99×100+100
=10000
(2)把99写成100-1的形式,199写成100+(100-1)的形式,可以得到第二种简便算法:
99×99+199
=(100-1)×99+(100-1)+100
=(100-1)×(99+1)+100
=(100-1)×100+100
=10000
四、改数法
有些题目,可以根据情况把其中的某个数进行转化,创造条件化繁为简。
例4 计算:25×5×48
25×5×48
=25×5×4×12
=(25×4)×(5×12)
=100×60
=6000
把48转化成4×12的形式,使计算简便。
例5 计算:16×25×25
因为4×25=100,而16=4×4,由此可将两个4分别与两个25相乘,即原式可转化为:(4×25)×(4×25)。
16×25×25
=(4×25)×(4×25)
=100×100
=10000
乘法简便运算方法
一、结合法
一个数连续乘两个一位数,可根据情况改写成用这个数乘这两个数的积的形式,使计算简便。
例1 计算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在计算时,添加一个小括号可以使计算简便。因为括号前是乘号,所以括号内不变号。
二、分解法
一个数乘一个两位数,可根据情况把这个两位数分解成两个一位数相乘的形式,再用这个数连续乘两个一位数,使计算简便。
例2 计算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
将18分解成2×9的形式,再将括号去掉,使计算简便。
三、拆数法
有些题目,如果一步一步地进行计算,比较麻烦,我们可以根据因数及其他数的特征,灵活运用拆数法进行简便计算。
例3 计算:99×99+199
(1)在计算时,可以把199写成99+100的形式,由此得到第一种简便算法:
99×99+199
=99×99+99+100
=99×(99+1)+100
=99×100+100
=10000
(2)把99写成100-1的形式,199写成100+(100-1)的形式,可以得到第二种简便算法:
99×99+199
=(100-1)×99+(100-1)+100
=(100-1)×(99+1)+100
=(100-1)×100+100
=10000
四、改数法
有些题目,可以根据情况把其中的某个数进行转化,创造条件化繁为简。
例4 计算:25×5×48
25×5×48
=25×5×4×12
=(25×4)×(5×12)
=100×60
=6000
把48转化成4×12的形式,使计算简便。
例5 计算:16×25×25
因为4×25=100,而16=4×4,由此可将两个4分别与两个25相乘,即原式可转化为:(4×25)×(4×25)。
16×25×25
=(4×25)×(4×25)
=100×100
=10000
1、十几乘十几:口诀:头乘头,尾加尾,尾乘尾。例:12×14=解: 1×1=1 2+4=6 2×4=8 12×14=168注:个位相乘,不够两位数要用0占位。
2、头相同,尾互补,尾相加等于10:口诀:一个头加1后,头乘头,尾乘尾。例:23×27=解:2+1=3 2×3=6 3×7=21 23×27=621注:个位相乘,不够两位数要用0占位。
3、第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。例:37×44=解:3+1=4 4×4=16 7×4=28 37×44=1628注:个位相乘,不够两位数要用
乘法的简便运算技巧:
增补简便运算。对数字进行补增或差分。目的是形成后几位为0的整数,如40、 567900等。
位数差分。将数字差分为各个位数,如56789=50000+6000+700+80+9。利用乘法运算性质,分别相乘。这种方法运算简单,但需要注意的是若乘号前后数字均为复杂的多位数,该方法虽然简化的乘法运算,但却增加了加法运算难度。
除法的简便运算技巧
将除法转化为分数,对分子、分母同时提取公约数,减少多位数运算难度。
差分分子,形成多个由分母倍数组成的多项式加法运算。例如 768/8=(800+8-40)/8.
当分子小于分母时,也可以考虑将分子、分母上下倒置,差分新分子,计算结果。但须注意倒置后的结果是原题结果的倒数。
你好,乘法的简便运算技巧是有哪些呢?
我们来总结归纳一下,有哪些技巧,可以帮助我们快速作答:
(1)乘法运算定律的使用(其主要的目的是“凑整”)
①交换律,即找朋友凑整,两个数相乘,交换因数的位置,积不变,即a×b=b×a;
②结合律,即找朋友凑整,三个数或多个数相乘,可以调整运算顺序,积不变,即a×b×c==(a×b)×c==a×(b×c)
③分配律(一),即分拆倍数凑整,两个数的和(或差)与另一个相乘,可以将这两个数先分别与这个数相乘,然后再把两个乘积相加(减),结果不变,即(a+b)×c=a×c+b×c
分配律(二),即合并倍数凑整,两组或多组算式中有一个相同的因数,可以将这个相同的数提取出来,再与其他因数的和或差相乘,结果不变,即a×c+b×c=c×(a+b)。
以上就是一些简单的运算技巧,希望你能够学以致用。