原式=(2√2 - 3)^2019 × (2√2 + 3)^(2019 + 1)
=(2√2 - 3)^2019× (2√2 + 3)^2019 × (2√2 + 3)
=[(2√2 - 3)×(2√2 + 3)]^2019 × (2√2 + 3)
=[(2√2)² - 3²]^2019 × (2√2 + 3)
=(8-9)^2019 × (2√2 + 3)
=(-1)^2019 × (2√2 + 3)
=-1×(2√2 + 3)
=-2√2 - 3
(2倍根号2-3)219次方x(2倍根号2+3)2019次方x(2倍根号2+3)=(8-9)2019次方x(2倍根号2+3)=-(2倍根号2+3)。
(2√2-3)^2019*(2√2+3)^2020
=(2√2-3)^2019*(2√2+3)^2019*(2√2+3)
=[(2√2-3)*(2√2+3)]^2019*(2√2+3)
=-1*(2√2+3)
=-2√2-3
负2减根号三
第二个2020变为 2019 (2+根号3)