先了解机器视觉的基本概念,有何用途等基础知识。再确定好自己想要学习的机器视觉领域和方向,例如:硬件or软件方向?确认学习方向后可以通过网络搜索相关学习资源,如果有条件的话可以通过实习或工作或其他实际使用操作深入学习。
想了解更多机器视觉相关内容可登录:www.51camera.com.cn网页链接
从图像处理入手,先了解图像处理最基本的操作,如图片的读取、显示,仿射变换,平滑、锐化、腐蚀膨胀等。
理论实践结合。
机器视觉系统最基本的特点就是提高生产的灵活性和自动化程度。在一些不适于人工作业的危险工作环境或者人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉。同时,在大批量重复性工业生产过程中,用机器视觉检测方法可以大大提高生产的效率和自动化程度。
2011年,中国机器视觉市场步入后增长调整期。相较2010年的高速增长,虽然增长率有所下降,但仍保持很高的水平。2011年中国机器视觉市场规模为10.8亿元,同比增长30.1%,增速同比2010年下降18.1个百分点,其中智能相机、工业相机、软件和板卡都保持了不低于30%的增速,光源也达到了28.6%的增长幅度,增幅远高于中国整体自动化市场的增长速度。电子制造行业仍然是拉动需求高速增长的主要因素。2011年机器视觉产品电子制造行业的市场规模为5.0亿人民币,增长35.1%。市份额达到了46.3%。电子制造、汽车、制药和包装机械占据了近70%的机器视觉市场份额。
一个典型的工业机器视觉系统包括:光源、镜头(定焦镜头、变倍镜头、远心镜头、显微镜头)、 相机(包括CCD相机和COMS相机)、图像处理单元(或图像捕获卡)、图像处理软件、监视器、通讯 / 输入输出单元等。
可以从图像处理入手,先了解下图像处理最基本的操作,比如图片的读取、显示,仿射变换,平滑、锐化、腐蚀膨胀等。
建议你最好做一段时间的机器视觉业务,这样你就对机器视觉有个比较全面的认识。也知道该从哪里下手了。机器视觉是个新行业,你只有走进来才能发现自己缺什么。
计算机视觉(Computer Vision)又称为机器视觉(Machine Vision),顾名思义是一门“教”会计算机如何去“看”世界的学科。在机器学习大热的前景之下,计算机视觉与自然语言处理(Natural Language Process, NLP)及语音识别(Speech Recognition)并列为机器学习方向的三大热点方向。而计算机视觉也由诸如梯度方向直方图(Histogram of Gradient, HOG)以及尺度不变特征变换(Scale-Invariant Feature Transform, SIFT)等传统的手办特征(Hand-Crafted Feature)与浅层模型的组合逐渐转向了以卷积神经网络(Convolutional Neural Network, CNN)为代表的深度学习模型。
传统的计算机视觉对待问题的解决方案基本上都是遵循: 图像预处理 → 提取特征 → 建立模型(分类器/回归器) → 输出 的流程。 而在深度学习中,大多问题都会采用端到端(End to End)的解决思路,即从输入到输出一气呵成。本次计算机视觉的入门系列,将会从浅层学习入手,由浅入深过渡到深度学习方面。