对数曲线y=lnx上哪一点处的曲率半径最小

2024-11-25 04:47:56
推荐回答(2个)
回答1:

简单计算一下即可,答案如图所示

回答2:

y=lnx
y'=1/x
y''=-x^(-2)
曲率半径公式ρ=[(1+y'^2)^(3/2)]/∣y"∣
= (1+ (1/x)^2)^(3/2) / (x^(-2))
=x^2 * (1+ x^(-2) )^(3/2)
对它求导
=2x*(1+x^(-2))^(3/2) +x^2 * 3/2*(1+x^(-2))^(1/2) *(-2)x^(-3)
=2x*(1+x^(-2))*(1+x^(-2))^(1/2)-3*x^(-1)*(1+x^(-2))^(1/2)
=(2x-1/x)*(1+x^(-2))^(1/2)
=(2x^2-1)*(1+x^2))^(1/2)/x
2x^2-1=0
x=2^(1/2)时,曲率半径最小
代入曲率半径公式ρ=2*(1+1/2)^(3/2)=2*(3/2)^(3/2)