证明空间任意无三点共线的四点A、B、C、D共面的充分必要条件是:对于空间任一点O,存在实数x、y、z且x+y+

2024-12-16 02:30:34
推荐回答(1个)
回答1:

(必要性)依题意知,B、C、D三点不共线,
则由共面向量定理的推论知:四点A、B、C、D共面
?对空间任一点O,存在实数x 1 、y 1 ,使得
OA
=
OB
+x 1
BC
+y 1
BD

=
OB
+x 1
OC
-
OB
)+y 1
OD
-
OB

=(1-x 1 -y 1
OB
+x 1
OC
+y 1
OD

取x=1-x 1 -y 1 、y=x 1 、z=y 1
则有
OA
=x
OB
+y
OC
+z
OD
,且x+y+z=1.
(充分性)对于空间任一点O,存在实数x、y、z且x+y+z=1,使得
OA
=x
OB
+y
OC
+z
OD

所以x=1-y-z得
OA
=(1-y-z)
OB
+y
OC
+z
OD

OA
=
OB
+y
BC
+z
BD
,即:
BA
=y
BC
+z
BD

所以四点A、B、C、D共面.
所以,空间任意无三点共线的四点A、B、C、D共面的充分必要条件是:
对于空间任一点O,存在实数x、y、z且x+y+z=1,使得
OA
=x