已知f(α)=sin(α-π⼀2)·cos(3π⼀2-α)·tan(π-α)⼀tan(-α-π)·sin(-α-π)

2025-01-05 22:31:01
推荐回答(2个)
回答1:

解:(1)f(α)=[sin(π+α)cos(2π-α)tan(-α+3π/2)tan(-α-π)]/sin(π-α)
=[(-sinα)*cosα*cotα*(-tanα)]/sinα
=cosα;
(2)∵cos(α-3π/2)=3/5 ==>cos(3π/2-α)=3/5
==>-sinα=3/5
∴sinα=-3/5
∵α是第三象限角
∴cosα<0
∴cosα=-√(1-sin²α)=-4/5
故f(α)=cosα=-4/5;
(3)∵α=-1860°
=5*360°+60°
∴f(α)=cos(5*360°+60°)
=cos(60°)
=1/2。

回答2:

f(α)=sin(α-π/2)·cos(3π/2-α)·tan(π-α)/tan(-α-π)·sin(-α-π)
=-sinα·(-sinα)·(-tanα)/(-tanα)·(-sinα)=-sinα
所以f(-4π/3)=-sin(2π-4π/3)=-sin(2π/3)=-2分之根号3
cos(α-3π/2)=1/5,可得出cos(α+π/2)=1/5, 即-sinα=1/5=f(α)