数学高手请进。帮忙解答(写出过程,要详细的过程,好的话有加分)

2025-02-25 13:53:57
推荐回答(6个)
回答1:

1.解 如图10—12所示,圆x2+(y-R)2=r2的上、下半圆分别为
y=f2(x)=R+ 根号下(r^2-x^2)
y=f1(x)=R- /x/<= r 。
故圆环体的截面面积函数是
A(x)= ([f2(x)]^2- [f1(x)]^2)*pai
=4pai*R*根号下(r^2-x^2) /x/<= r 。
由此得到圆环体的体积为
V=2*(A(x)从0到r的积分)=2pai^2*r^2*R.

2: S过原点,所以切线为y=abx(切于原点), y=-(1/ab)x(切于a,b之间)
第二个切线与S联立得到的方程只有两个解,其中非零解为重根,得到a,b的关系式(1)。第二条切线斜率与S导数相等解得切点为(a+b)/2…………

3:两积分相等可解得φ的大小,带入一个积分得到A。

4:展开积分得到关键在于-2k(-x2cosx+sinx)+k2[x/2-(sin2x)/4]|(上π下0) 的最小值,用拉格朗日极值定理求最小值…………

5:貌似只有一个交点在原点O…………
对直线减抛物线的结果在(0,2a+k)积分为4.5a3,得到斜率k=a

6:z=(1+x/10)(1-y/10)
把y代入z求z的极大值,得x=5(1-k)k
即求z>1的范围,得0

回答2:

1:x2+(y-R)2=r2 对y积分,注意要以圆和x轴的交点为界分两边分别积分,具体的式子看三楼吧
2: S过原点,所以切线为y=abx(切于原点), y=-(1/ab)x(切于a,b之间)
第二个切线与S联立得到的方程只有两个解,其中非零解为重根,得到a,b的关系式(1)。第二条切线斜率与S导数相等解得切点为(a+b)/2…………
3:两积分相等可解得φ的大小,带入一个积分得到A。
4:展开积分得到关键在于-2k(-x2cosx+sinx)+k2[x/2-(sin2x)/4]|(上π下0) 的最小值,用拉格朗日极值定理求最小值…………
5:貌似只有一个交点在原点O…………
对直线减抛物线的结果在(0,2a+k)积分为4.5a3,得到斜率k=a
6:z=(1+x/10)(1-y/10)
把y代入z求z的极大值,得x=5(1-k)k
即求z>1的范围,得0

回答3:

1.解 如图10—12所示,圆x2+(y-R)2=r2的上、下半圆分别为
y=f2(x)=R+ 根号下(r^2-x^2)
y=f1(x)=R- /x/<= r 。
故圆环体的截面面积函数是
A(x)= ([f2(x)]^2- [f1(x)]^2)*pai
=4pai*R*根号下(r^2-x^2) /x/<= r 。
由此得到圆环体的体积为
V=2*(A(x)从0到r的积分)=2pai^2*r^2*R.
2: S过原点,所以切线为y=abx(切于原点), y=-(1/ab)x(切于a,b之间)
第二个切线与S联立得到的方程只有两个解,其中非零解为重根,得到a,b的关系式(1)。第二条切线斜率与S导数相等解得切点为(a+b)/2…………
3:两积分相等可解得φ的大小,带入一个积分得到A。
4:展开积分得到关键在于-2k(-x2cosx+sinx)+k2[x/2-(sin2x)/4]|(上π下0) 的最小值,用拉格朗日极值定理求最小值…………
5:貌似只有一个交点在原点O…………
对直线减抛物线的结果在(0,2a+k)积分为4.5a3,得到斜率k=a
6:z=(1+x/10)(1-y/10)
把y代入z求z的极大值,得x=5(1-k)k
即求z>1的范围,得0凡事都要靠自己的努力

回答4:

1、因为圆x2+(y-R)2=r2(r 故:V=4/3πr~3=4/3π(R+r)~3

2、
没时间拉 我要下拉,我下次继续帮你做

回答5:

1.解 如图10—12所示,圆x2+(y-R)2=r2的上、下半圆分别为
y=f2(x)=R+ 根号下(r^2-x^2)
y=f1(x)=R- /x/<= r 。
故圆环体的截面面积函数是
A(x)= ([f2(x)]^2- [f1(x)]^2)*pai
=4pai*R*根号下(r^2-x^2) /x/<= r 。
由此得到圆环体的体积为
V=2*(A(x)从0到r的积分)=2pai^2*r^2*R.
2.
……
积分类的数学符号太难表示了。。。就做第一道吧

回答6:

自己做做,以后就会了.