由于1997个数都是奇数,并且有三个数不是1,那么其余1994个数都是1,它们的和是1994。2是偶数,所以三个不同质数不能包括2,那么这三个质数的末位数字只能是1、3、5、7、9。
设三个不同质数分别是a、b、c,于是有
1994+a+b+c=a×b×c。
(一)末位数字是5的质数只有5。设a=5,有1994+5+b+c=5×b×c,质数b、c的末位数字只能是1、3、7、9,从中选出两个,分别算出(1994+5+b+c)和5×b×c的末位数字。见下表:
显然,只有当b、c的末位数字是7、9或3、3时,(1994+5+b+c)和5×b×c的末位数字才相同。
1.当质数b、c的末位数字是7、9时,设b的末位数字是7,b可能是7、17、37……。
①如果b=7,则有1994+5+7+c=5×7×c,解得c=59,59是质数,所以5、7、59这三个质数符合题目要求。
②b=17,则有1994+5+17+c=5×17×c,解得c=24,24是合数,不合题意,b≠17.
题意,b≠37。
然b大于37时,没有答案。
2.当质数b、c的末位数字是3、3时,末位数字是3的质数有3、13、23、43……。
①设b=3,则有1994+5+3+c=5×3×c,解得c=147,147=3×7×7,不合题意。
显然,b、c末位数字都是3时是没有答案的。
(二)、如果三个不同的质数不包括5,则它们的末位数字只能是 1、3、7、9,从中选出3个,算出(1994+a+b+c)和a×b×c的末位数字,见下表:
显然,只有当a、b、c的末位数字是7、7、1或1、3、9时,(1994+a+b+c)和a×b×c的末位数字才相同。
1.当质数a、b、c的末位数字是7、7、1时。设a、b的末位数字是7,那么a、b可能是7、17、37、47……,设c的末位数字是1,那么c可能是11、31、41……。
显然,当a、b是更大的数时是没有答案的。
2.当质数a、b、c的末位数字是1、3、9时。末位数字是1的质数有11、31、41……,末位数字是3的质数有3、13……,末位数字是9的质数有19、29……。
①设三个质数分别是11、13、19,由于1994+11+13+19=2037,而11×13×19=2717,2717>2037,显然末位数字是3的质数只能是3。
题意。
有答案。
综上所述,本题只有一个答案,三个不同的质数是5、7、59。
1,2,3
2,3,5
13
56
95