如何判断收敛还是发散

2024-12-17 16:52:32
推荐回答(1个)
回答1:

看n趋向无穷大时,Xn是否趋向一个常数,即可以判断收敛还是发散。

可是有时Xn比较复杂,并不好观察,加减的时候,把高阶的无穷小直接舍去如 1 + 1/n,用1来代替乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小。

收敛函数一定有界,但是有界函数不一定收敛,如f(x)在x=0处f(0)=2,在其他x处f(x)=1,那么f(x)在x=0处就不是收敛的,那么f(x)就不是收敛函数,但是f(x)是有界的,因为1≤f(x)≤2。

扩展资料

基本公式:

1、一般数列的通项an与前n项和Sn的关系:an=Sn-Sn-1。

2、等差数列的通项公式:an=a1+(n-1)d      an=ak+(n-k)d     (其中a1为首项、ak为已知的第k项)  当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。

3、等差数列的前n项和公式:Sn=An^2+Bn     Sn=na1+[n(n-1)]d/2   Sn=(a1+an)n/2。

当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。

4、等比数列的通项公式: an= a1 qn-1    an= ak qn-k  (其中a1为首项、ak为已知的第k项,an≠0)。

5、等比数列的前n项和公式:当q=1时,Sn=n a1     (是关于n的正比例式)。