矩阵中行与列是否等同可以互换?

2024-12-27 11:43:40
推荐回答(1个)
回答1:

矩阵的两行或两列可以互换,不需要像行列式一样变号。

在线性代数中,矩阵的初等变换是指以下三种变换类型:

1、交换矩阵的两行(对调i,j,两行记为ri,rj);

2、以一个非零数k乘矩阵的某一行所有元素(第i行乘以k记为ri×k);

3、把矩阵的某一行所有元素乘以一个数k后加到另一行对应的元素(第j行乘以k加到第i行记为ri+krj)。

初等矩阵性质:

1、设A是一个m×n矩阵,对A施行一次初等行变换,其结果等价于在A的左边乘以相应的m阶初等矩阵;对A施行一次初等列变换,其结果等价于在A的右边乘以相应的n阶初等矩阵。反之亦然。

2、方阵A可逆的充分必要条件是存在有限个初等矩阵P1,P2,......Pn,使得A=P1P2...Pn.

3、m×n矩阵A与B等价当且仅当存在m阶可逆矩阵P与n阶可逆矩阵Q使得B=PAQ。