AlphaGo到底是如何下棋的呢?
AlphaGo通过蒙特卡洛树搜索算法和两个深度神经网络合作来完成下棋。在与李世石对阵之前,谷歌首先用人类对弈的近3000万种走法来训练“阿尔法狗”的神经网络,让它学会预测人类专业棋手怎么落子。然后更进一步,让AlphaGo自己跟自己下棋,从而又产生规模庞大的全新的棋谱。谷歌工程师曾宣称AlphaGo每天可以尝试百万量级的走法。
“它们的任务在于合作‘挑选’出那些比较有前途的棋步,抛弃明显的差棋,从而将计算量控制在计算机可以完成的范围内。在本质上,这和人类棋手所做的是一样的。”中国科学院自动化研究所博士研究生刘加奇说。