1.1 一质点沿直线运动,运动方程为x(t) = 6t2 - 2t3.试求:
(1)第2s内的位移和平均速度;
(2)1s末及2s末的瞬时速度,第2s内的路程;
(3)1s末的瞬时加速度和第2s内的平均加速度.
[解答](1)质点在第1s末的位置为:x(1) = 6×12 - 2×13 = 4(m).
在第2s末的位置为:x(2) = 6×22 - 2×23 = 8(m).
在第2s内的位移大小为:Δx = x(2) – x(1) = 4(m),
经过的时间为Δt = 1s,所以平均速度大小为:=Δx/Δt = 4(m·s-1).
(2)质点的瞬时速度大小为:v(t) = dx/dt = 12t - 6t2,
因此v(1) = 12×1 - 6×12 = 6(m·s-1),
v(2) = 12×2 - 6×22 = 0
质点在第2s内的路程等于其位移的大小,即Δs = Δx = 4m.
(3)质点的瞬时加速度大小为:a(t) = dv/dt = 12 - 12t,
因此1s末的瞬时加速度为:a(1) = 12 - 12×1 = 0,
第2s内的平均加速度为:= [v(2) -v(1)]/Δt = [0 – 6]/1 = -6(m·s-2).