A类:AF=CE.
∵四边形ABCD是平行四边形
∴AD=CB,∠A=∠C,∠ADC=∠ABC
∵∠ADF=
∠ADC,∠CBE=1 2
∠ABC1 2
∴∠ADF=∠CBE
在△ADF和△CBE
AD=CB,∠A=∠C
∴△ADF≌△CBE
∴∠ADF=∠CBE
∴AF=CE.
(B类)AD=CF
证明:∵四边形ABCD是矩形
∴∠AED=∠FDC,∠A=90°
在△ADE和△FCD中
∵∠CFD=∠A=90°,DE=CD,∠AED=∠FDC
∴△ADE≌△FCD
∴AD=CF
(C类10分)
证明:∵四边形ABCD是菱形
∴AC平分∠DAB
∵AB∥CD,∠DAB=60°
∴∠CAE=
∠DAB=30°.1 2
∵CE⊥AC
∴∠E=90°-∠CAE=90°-30°=60°
∴∠DAB=∠E
∵∠DAB=∠E,AB∥CD
∴四边形AECD是等腰梯形.