(1)AE与圆O的乎配扰位卖凯置关系式相切,
证明:作射线AO交BC于F,
∵AB=AC,
∴AF⊥BC,
∵AE∥BC,
∴AF⊥AE,
∵AF过O,
∴AE是⊙O的切线;
(2)解:作直径CM,连接BM,
则∠M=∠BAC,
∵sin∠BAC=
3
5
,BC=6,
∴
6
CM
=
3
5
,
∴CM=10,
即BD=10,OC=5,
∵AB=AC,AF⊥BC,
∴CF=BF=3,
由勾股定理得:OF=4,则AF=4+5=9,由勾股定理得:AC=
92+32
=3
10
,
∵∠ACB=∠ADB,
∴cos∠ADB=cos∠岁旦ACE,
∴
AD
10
=
3
3
10
,
∴AD=
10
.
(1)AE与圆O的位置关系式相切,
证明:作射线AO交BC于F,
∵AB=AC,
∴AF⊥BC,
∵AE∥BC,
∴AF⊥AE,
∵AF过O,
∴AE是⊙O的切线世顷;
(2)解嫌启:作直径CM,连接BM,
则∠M=∠BAC,
∵sin∠BAC=
,BC=6,3 5
∴
=6 CM
,3 5
∴CM=10,
即BD=10,OC=5,
∵AB=AC,AF⊥BC,
∴CF=BF=3,
由勾股定理得:OF=4,则AF=4+5=9,由勾股定理得:AC=
=3
92+32
,
10
∵∠ACB=∠搜者陆ADB,
∴cos∠ADB=cos∠ACE,
∴
=AD 10
,3 3
10
∴AD=
.
10