求定积分∫(1+1⼀x)^2dx(上限为-1,下限为-2)

2024-12-16 12:44:14
推荐回答(1个)
回答1:

∫(上限-1,下限-2) (1+1/x)^2 dx
=∫(上限-1,下限-2) 1+ 2/x +1/x^2 dx
= x +2ln|x| -1/x 代入上下限-1,-2
= (-1+2ln1 +1) - (-2+2ln2 +1/2)
= 3/2 -2ln2