这个二重积分对称型,二重积分对称性定理:积分区域D关于原点对称,f(x,y)同时为x,y的奇或偶函数,则∫∫f(x,y)dxdy(在区域D上积分)=0(当f关于x,y的奇函数,即f(-x,-y)=-f(x,y)时)或∫∫f(x,y)dxdy(在区域D上积分)=2∫∫f(x,y)dxdy(在区域D*上积分,其中区域D*是区域D在x>=0(或y>=0)的部分),(当f关于x,y的偶函数,即f(-x,-y)=f(x,y)时)换句话说,必须是同时关于X,Y的奇偶函数