已知x+y=5,xy=3,求(1).x^2+y^2的值,(2).x^3+y^3的值

2025-02-28 00:33:27
推荐回答(5个)
回答1:

(x+y)^2=5^2
x^2+2xy+y^2=25
x^2+y^2=25-2xy=25-6=19

x^3+y^3
=(x+y)(x^2-xy+y^2)
=5*(19-3)
=80

回答2:

x^2+y^2=(x+y)^2-2xy=25-6=19

x^3+y^3=(x+y)[(x+y)^2-3xy]=5*(5^2-3*3)=80

回答3:

x^2+y^2=(x+y)^2-2xy=25-6=19

x^3+y^3=(x+y)(x^2+y^2-xy)=5*(19-3)=80

回答4:

x^2+y^2=19
x^3+y^3=80

回答5:

(1)因为X+Y=5,所以(X+Y)∧2=25,又因为(X+Y)∧2=X∧2+2XY+Y∧2,所以X∧+Y∧2=(X+Y)∧2-2XY=25-2*3=19
(2)因为(X+Y)∧3=X∧3+3X∧2Y+3Y∧2X+Y∧3,所以X∧3+Y∧3=(X+Y)∧3-3XY(X+Y)=125-3*3*5=80