观察下列各等式: 1 = 1눀,1 + 3 = 2눀,1 + 3 + 5 = 3눀,1 + 3 + 5 + 7 = 4눀

2025-02-22 22:08:39
推荐回答(3个)
回答1:

(1)1+3......+N=〔(1+N)/2〕平方
(2)2007+1=2008÷2=2004平方=4016016

希望对你有帮助

回答2:

n = 1, s = 1 = 1²
n = 2, s = 1 + 3 = (1 + 3) * 2 * ½ = 4 = 2² {梯形公式 (上底+下底) * 高 / 2}
n = 3, s = 1 + 3 + 5 = (1 + 5) * 3 * ½ = 9 = 3² {梯形公式 (上底+下底) * 高 / 2}
.....
n = n, s = 1 + 3 + 5 + .... + (2n-1) = (1 + 2n-1) * n * ½ = 2n * n * ½ = n²

n = (2007 + 1) / 2 = 1004
1 + 3 + 5 + 7 +...+ 2007 = 1004² = 1008016

回答3:

1 + 3 + 5 + 7 + …… + (2n-1) = n²