证明:在△ABC 中
∵AB=AC
∴∠B=∠BCA
∵ED⊥BC
∴∠B+∠AFD=90°
∵∠BCA+∠DEC=90°
∴∠AFD=∠DEC
又∵∠DEC=∠AEF (对顶角)
∴∠AFD=∠AEF
∴AE=AF
∵ab=ac∴角b=角c ∵ed⊥bc∴∠b+∠f=∠c+∠dec∵∠dec=∠aef∴∠b+∠f=∠c+aef∵∠b=∠c∴∠f=∠aef∴ae=af 求采纳