x1+x2=[2k(k+4)+6]/(1+k^2), x1x2=[(k+4)^2+5]/(1+k^2). ---①
联立L1与L2得 N(2(k-1)/(2k+1),-3k/(2k+1)),
验算(AM*AN)^2与k无关,
AM^2=[(x1+x2)/2-1]^2+[k(x1+x2)/2-k]^2,
AN^2=[2(k-1)/(2k+1)-1]^2+[-3k/(2k+1)]^2, ----②
由①②可 得,(AM*AN)^2=9.所以为定值
设直线l1的斜率为k,则
l1:y=k(x-1)
l2:x+2y+2=0
联立求出N点的坐标 N[(2k-2)/(2k+1),(-3)k/(2k+1)]
设M点坐标为(x0,k(x0-1) )
由圆心c的坐标C(3,4)
可得CM所在直线斜率k(cm)=[4-k(x0-1)]/(3-x0)
又CM⊥PQ,即,k×k(cm)=-1
所以,k×[4-k(x0-1)]/(3-x0)=-1
解得x0=(k²+4k+3)/(k²+1)
所以,
|AM|²=[(4k+2)/(k²+1)]²+[k(4k+2)/(k²+1)]²=(4k+2)²/(k²+1)=4(2k+1)²/(1+k²)
|AN|²=[(-3)/(2k+1)]²+[(-3)k/(2k+1)]²=9(1+k²)/(2k+1)²
所以,
|AM|²×|AN|²
=[4(2k+1)²/(1+k²)]×[9(1+k²)/(2k+1)²]
=36
即,|AM|×|AN|=6
所以,|AM|×|AN|为定值6
先求一组L1求出定值,然后将定值作为条件验证体设成立就可以了。这种题直接做很困难,可以用这种方法解决类似问题。