已知tana,tanb是方程x2(平方)-5x+6=0的两个实根,求2sin2(a+b)-3sin(a+b)cos(a+b)+cos2(a+b)

2024-12-15 15:02:14
推荐回答(4个)
回答1:

依题意,有{tana+tanb=5 tana*tanb=6 即 {sina/cosa+sinb/cosb=5 sinasinb/cosacosb=6所求式=4sin(a+b)cos(a+b)-3sin(a+b)cos(a+b)+cos^2(a+b) =sin(a+b)cos(a+b)+cos(a+b)cos(a+b) =[sinacosb+cosasinb][cosacosb-sinasinb]+(cosacosb-sinasinb)^2由上述方程组可知:{sinacosb+cosasinb=5cosacosb sinasinb=6cosacosb得:原式=-25(cosacosb)^2+25(cosacosb)^2 =0看懂没?没看懂欢迎追问(讲清楚哪没懂)

回答2:

tana+tanb=5,tanatanb=6,tan(a+b)=(tana+tanb)/(1-tanatanb)=-1,所以a+b=2kπ-π/4(k=0,1,2,3.....)因为k的取值不影响三角函数值,所以可取k=0,则a+b=-π/4代入方程得原式=sin(a+b)cos(a+b)+cos2(a+b)=-1/2

回答3:

tana=2,tanb=3tan(a+b)=2+3/(1-6)=-1不妨设a+b=3π/4代入可得应该是-1/2

回答4:

解:x1+x2=tana+tanb=5,x1x2=tana×tanb=6tan(a+b)=(tana+tanb)/(1-tana×tanb)=5/(1-6)=-12[sin(a+b)]^2-3sin(a+b)cos(a+b)+[cos(a+b)]^2=[cos(a+b)]^2{2[tan(a+b)]^2-3[tan(a+b)]+1}={2[tan(a+b)]^2-3[tan(a+b)]+1}/{1+[tan(a+b)]^2}=(2×1+3+1)/(1+1)=6/2=3