一、定子损耗
降低电动机定子I^2R损耗的主要手段实践中采用较多的方法是:
1、增加定子槽截面积,在同样定子外径的情况下,增加定子槽截面积会减少磁路面积,增加齿部磁密;
2、增加定子槽满槽率,这对低压小电动机效果较好,应用最佳绕线和绝缘尺寸、大导线截面积可增加定子的满槽率;
3、尽量缩短定子绕组端部长度,定子绕组端部损耗占绕组总损耗的1/4~1/2,减少绕组端部长度,可提高电动机效率。实验表明,端部长度减少20%,损耗下降10%。
二、转子损耗
电动机转子I^2R损耗主要与转子电流和转子电阻有关,相应的节能方法主要有:
1、减小转子电流,这可从提高电压和电机功率因素两方面考虑;
2、增加转子槽截面积;
3、减小转子绕组的电阻,如采用粗的导线和电阻低的材料,这对小电动机较有意义,因为小电动机一般为铸铝转子,若采用铸铜转子,电动机总损失可减少10%~15%,但现今的铸铜转子所需制造温度高且技术尚未普及,其成本高于铸铝转子15%~20%。
三、铁耗
电动机铁耗可以由以下措施减小:
1、减小磁密度,增加铁芯的长度以降低磁通密度,但电动机用铁量随之增加;
2、减少铁芯片的厚度来减少感应电流的损失,如用冷轧硅钢片代替热轧硅钢片可减小硅钢片的厚度,但薄铁芯片会增加铁芯片数目和电机制造成本;
3、采用导磁性能良好的冷轧硅钢片降低磁滞损耗;
4、采用高性能铁芯片绝缘涂层;
5、热处理及制造技术,铁芯片加工后的剩余应力会严重影响电动机的损耗,硅钢片加工时,裁剪方向、冲剪应力对铁芯损耗的影响较大。顺着硅钢片的碾轧方向裁剪,并对硅钢冲片进行热处理,可降低10%~20%的损耗。
四、杂散损耗
如今对电动机杂散损耗的认识仍然处于研究阶段,现今一些降低杂散损失的主要方法有:
1、采用热处理及精加工降低转子表面短路;
2、转子槽内表面绝缘处理;
3、通过改进定子绕组设计减少谐波;
4、改进转子槽配合设计和配合减少谐波,增加定、转子齿槽、把转子槽形设计成斜槽、采用串接的正弦绕组、散布绕组和短距绕组可大大降低高次谐波;采用磁性槽泥或磁性槽楔替代传统的绝缘槽楔、用磁性槽泥填平电动机定子铁芯槽口,是减少附加杂散损耗的有效方法。
五、风摩损耗
应得到人们应有的重视,它占电机总损失的25%左右。摩擦损失主要有轴承和密封引起,可由以下措施减小:
1、尽量减小轴的尺寸,但需满足输出扭矩和转子动力学的要求;
2、使用高效轴承;
3、使用高效润滑系统及润滑剂;
4、采用先进的密封技术。
发电机运行时的损耗主要包括:发电机冷却损耗(水冷,氢冷,空冷),发电机风扇鼓风损耗,发电机定子线圈铜损,发电机铁芯损耗,发电机转子励磁损耗,转子摩擦损耗等。
发电机是能量转化装置,肯定有损耗,总体效率还是很高的,功率越大,效率越高。
柴油发电机作为备用电源,被广泛的使用于各个场所,很多的客户在购买柴油发电机时,为了节约成本,总是希望购买到最大功率的柴油发电机,现在 发电机厂家简单的说下玉柴发电机组在组装后及使用时可能的功能耗损:
1、柴油发电机在组装时,会装上风扇水箱,以及跟发电机进行轴连接,这时候,发电机组的功率相对于柴油发动机会损耗10%.
2、直流损耗,即发电机定子电流通过定子绕组发生的损耗
3、铁损,即发电机磁通在发电机内产生的磁耗,它包括主磁通在定子铁芯内产生的磁至损耗,涡流损耗和附加损耗三个方面.
4、励磁损耗.即发电机运行时励磁电流在转子电路中产生的损耗.
5、电器附加损耗.机发电机端部漏磁通在其附近中产生的损耗.各种谐波磁通产生的损耗.次谐波和高谐波在转子表层产生的铁损耗等.
6、机械损耗,即玉柴发电机组在运行中的通风损耗及传动部件摩擦损耗等。
发电机的损耗大致可分为五大类,即定子铜损、铁损、励磁损耗、电气附加损耗、机械损耗。发电机运行中,所有的损耗几乎都以发热的形式表现出来。
(1)定子铜损即定子电流流过定子绕组所产生的所有损耗。
(2)铁损即发电机磁通在铁芯内产生的损耗,主要是主磁通在定子铁芯内产生的磁滞损耗和涡流损耗,还包括附加损耗。
(3)励磁损耗即转子回路所产生的损耗,主要是励磁电流在励磁回路中产生的铜损。
(4)电气附加损耗则比较复杂,主要有端部漏磁通在其附近铁质构件中产生的损耗、各种谐波磁通产生的损耗、齿谐波和高次谐波在转子表层产生的铁损等。
(5)机械损耗主要包括通风损耗、轴承摩擦损耗等。