已知{an}是等比数列,a2=2.a5=1⼀4.则a1a2+a2a3+…+anan+1

2025-01-08 01:22:19
推荐回答(1个)
回答1:

设{an}公比为q
a5/a2=q^3=(1/4)/2=1/8
q=1/2
a1a2=2×(1/4)=1/2
ana(n+1)=a1q^(n-1)a1q^n=a1^2 q^(2n-1)=2^2 ×(1/2)^(2n-1)=(1/2)^(2n-3)
a(n+1)a(n+2)/[ana(n+1)]=(1/2)^(2n -1) /(1/2)^(2n-3)=1/4,为定值。
数列{ana(n+1)}是以1/2为首项,1/4为公比的等比数列。
a1a2+a2a3+...+ana(n+1)
=(1/2)×[1-(1/4)ⁿ]/(1-1/4)
=2/3 -(2/3)/4ⁿ
=2/3 -(1/3)/2^(2n-1)