“回文”是指正读反读都能读通的句子,它是古今中外都有的一种修辞方式和文字游戏,如“我为人人,人人为我”等。在数学中也有这样一类数字有这样的特征,成为回文数(palindrome number)。
设n是一任意自然数。若将n的各位数字反向排列所得自然数n1与n相等,则称n为一回文数。例如,若n=1234321,则称n为一回文数;但若n=1234567,则n不是回文数。
扩展资料:
四位的回文数有一个特点,就是它决不会是一个质数。设它为abba,那它等于a*1000+b*100+b*10+a,1001a+110b。能被11整除。
人们借助电子计算机发现,在完全平方数、完全立方数中的回文数,其比例要比一般自然数中回文数所占的比例大得多。例如11^2=121,22^2=484,7^3=343,11^3=1331,11^4=14641……都是回文数。
参考资料来源:
百度百科-回文数
"回文数"是一种数字.如:98789, 这个数字正读是98789,倒读也是98789,正读倒读一样,所以这个数字
就是回文数.
任意某一个数通过以下方式相加也可得到
如:29+92=121 还有 194+491=685,586+685=1271,1271+1721=2992
不过很多数还没有发现此类特征(比如196,下面会讲到)
另外个别平方数是回文数
1的平方=1
11的平方=121
111的平方=12321
1111的平方=1234321
。
。
。
。
依次类推
3×51=153
6×21=126
4307×62=267034
9×7×533=33579
上面这些算式,等号左边是两个(或三个)因数相乘,右边是它们的乘积。如果把每个算式中的“×”和“=”去掉,那么,它们都变成回文数,所以,我们不妨把这些算式叫做“回文算式”。还有一些回文算式,等号两边各有两个因数。请看:
12×42=24×21
34×86=68×43
102×402=204×201
1012×4202=2024×2101
不知你是否注意到,如果分别把上面的回文算式等号两边的因数交换位置,得到的仍是一个回文算式,比如:分别把“12×42=24×21”等号两边的因数交换位置,得到算式是:
42×12=21×24
这仍是一个回文算式。
还有更奇妙的回文算式,请看:
12×231=132×21(积是2772)
12×4032=2304×21(积是48384)
这种回文算式,连乘积都是回文数。
四位的回文数有一个特点,就是它决不会是一个质数。设它为abba,那它等于a*1000+b*100+b*10+a,1001a+110b。能被11整除。
六位的也一样,也能被11整除
还有,人们借助电子计算机发现,在完全平方数、完全立方数中的回文数,其比例要比一般自然数中回文数所占的比例大得多。例如11^2=121,22^2=484,7^3=343,11^3=1331,11^4=14641……都是回文数。
人们迄今未能找到五次方,以及更高次幂的回文数。于是数学家们猜想:不存在nk(k≥5;n、k均是自然数)形式的回文数。
在电子计算器的实践中,还发现了一桩趣事:任何一个自然数与它的倒序数相加,所得的和再与和的倒序数相加,……如此反复进行下去,经过有限次步骤后,最后必定能得到一个回文数。
这也仅仅是个猜想,因为有些数并不“驯服”。比如说196这个数,按照上述变换规则重复了数十万次,仍未得到回文数。但是人们既不能肯定运算下去永远得不到回文数,也不知道需要再运算多少步才能最终得到回文数。
思路: 许多朋友(包括我自己)一开始就思考使用循环:从1开始,判断该数是否是回文数,然后用一 个计数器记下回文数,一直到计数器得到N,返回第N个回文数。比较常用的是以下这种方法来判断是 否回文数: static boolean isPN(int num) {
int o = num;
int tmp = 0;
//使用循环把数字顺序反转
while(num != 0) {
tmp *= 10;
tmp += num % 10;
num /= 10;
}
//如果原始数与反转后的数相等则返回true
if(tmp == o)
return true;
return false;
} 这种思路的确可得到正确结果,但随着用来测试的N的增大,效率的问题就浮现了。因为是一重 循环,效率是O(n)。所以当N非常大时,所花的时间还是十分大的。
本文来自CSDN博客,转载请标明出处: http://blog.csdn.net/sky1415/archive/2010/01/08/5157931.aspx
回文数是指一个像16461这样“对称”的数,即:将这个数的数字按相反的顺序重新排列后,所得到的数和原来的数一样。这里,“回文”是指像“妈妈爱我,我爱妈妈”这样的,正读反读都相同的单词或句子。101,32123,9999。。。。