解:∵点P1与P关于OA对称.∴∠OQP=90°;同理:∠ORP=90°.∵∠OQP+∠ORP+∠QOR+∠P1PP2=360°.(四边形内角和为360度)即90°+90°+25°+∠P1PP2=360°.∴∠P1PP2=155°.