1⼀(1*2)+1⼀(2*3)+1⼀(3*4)+...+1⼀(2012*2013)

脱式计算,详细点,谢谢!
2025-02-24 21:03:13
推荐回答(3个)
回答1:


1/(1*2)+1/(2*3)+1/(3*4)+...+1/(2012*2013)
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+……+(1/2012-1/2013)
=1+(1/2-1/2)+(1/3-1/3)+……+(1/2012-1/2012)-1/2013——内部抵消
=1-1/2013
=2012/2013

裂项
1/n(n+1)=1/n-1/(n+1)

回答2:

原式=1-1/2+1/2-1/3+1/3-1/4+...+1/2012-1/2013
=1-1/2013
=2012/2013

回答3:

1/(1*2)+1/(2*3)+1/(3*4)+...+1/(2012*2013)
=1-1/2+1/2-1/3+1/3-1/4+.....+1/2012-1/2013
=1-1/2013
=2012/2013